Exact integration of the equation of motion for
an elastoplastic oscillator

April 14, 2010

We consider an oscillator with mass m = 1000kg, stiffness & = 40000kN /m
and a damping ratio (= 3% and yielding limit f, = 2500N, loaded by a half-
sine impulse,

Py si t/t 0<t<t
o(t) = o sin(7t/tq), st 1
0 otherwise

where Py = 6000N and t; = 0.3s.

In this paper we discuss a computer program that i wrote to integrate
the equation of motion of the particular system described above, where I
say a particular system because the execution branches are taken by prior
knowledge of the behaviour of the system, and not using tests in a step-by
step fashion, as it should be in a general solution.

The program, denoted by the different background, is written in the pro-
gramming language python, where we have sometimes to import some stuff
from an external module. In our case,

from math import x*

we are importing the asterisk, i.e., everything, from the module math. It
is customary to write first all the imports, to make apparent what external
modules the program requires.

Next, we define a function that returns two functions, namely the elastic
displacement and the elastic velocity of a sdof, subjected to an assigned load
and given initial conditions.

def resp-elas(m,c,k, cC,cS,w, F, x0,v0):

where m,c,k are the SDOF’s characteristics, x0,v0 are the initial conditions
and cC,cS,w, F define the loading, p(t) = cCcos(wt) + cSsin(wt) + F. Note
that ¢C and ¢S must be forces, as well as the constant force F

wn2=k /m ; wn=sqrt(wn2) ; beta=w/wn
z=c /(2*xmxwn) ; wd=wnxsqrt(l—z*z)
After computing the dynamic parameters, we compute the coefficients in the
particular integral
csi(t) =R sin(w t) + S cos(w t) + D
det=(1.—betaxx2)*xx2+(2xbetaxz)**2
R=((1—beta**2)xcS + (2xbetaxz)*xcC)/det/k

(
S=((1—betax*x*2)*xcC — (2xbetaxz)*cS)/det/k
D=F /k

Now the constants in the general integral, using the initial conditions,

#x(0) =1 % (Ax1 + Bx0) + Rx0 + Sx1 + D = z0
A=x0—-S-D
#v(0) =wd B— z wn A +wR = v0

B=(v0+z*wnxA—w*R) /wd

and using the general and the particular integral constants, we can define
the two functions that compute the response (displacement and velocity) for
t>0.
def x(t):
return (exp(—z*wnxt)*(Axcos (wdxt)+Bxsin (wdxt))
+R#sin (wkxt)+Sxcos (wkt)+D)
def v(t):
return (—zswnkxexp(—zxwnxt)*(Axcos (wdxt)+Bssin (wdxt))
+wdkexp(—zxwnx*t)x (Bxcos (wdxt)—Axsin (wdxt))
+wx (Rxcos (wxt)—Sxsin (wxt)))

Finally, we return to the caller these two functions! In python, functions are
objects like integers, floats, and other types of variables, and can be binded
to a name, e.g., s=sin; print s(3.14/2) prints 1.0.

return x,v
Next, we define another function defining functions, that returns the dis-
placement and velocity during the yielding phase. Examining the code you

could take a guess at the particular and general integral to the equation
mi + ci = cCcos(wt) + cSsin(wt) + F.

def resp_yield (m,c, cC,cS,w, F, x0,v0):
csi(t) =R sin(w t) + S cos(w t) + \alpha t
x(t) =A exp(—c t/m) + B +

+ R sin(w t) + 8 cos(w t) + alpha t
#ov(t) =— ¢ A/m exp(—c t/m) +

+w R cos(w t) —wS sin(w t) + alpha
alpha=F/c

det=wsx 2% (k24w 25xmk2)

R=(+w*cxcC—wxwxmxcS)/det ; S=(—wxcxcS—wrwimxcC)/det

#v(0) =—c A/ m+ wR + alpha = v0
A=mx (wxR+alpha—v0)/c
#x(0) =A+ B+ S =20
B=x0—A-S
def x(t):

return (Axexp(—cx*t/m) + B

+ Rxsin (wxt) + Sxcos(wxt) + alphaxt)

def v(t):

return (—c*xAxexp(—cx*t/m)/m

+ wxRxcos (wxt) — wkSxsin (wxt) + alpha)

return x,v

The next function we're going to define is a helper function, that returns a
root t* using the simple method of bisection, f(t*) = fo:

def bisect (f,f0,x0,x1):
h=(x0+x1)/2.0
fh=f (h)— f0
if abs(fh)<le—8 : return h
£0=f (x0)— £0
f1=f(x1)
if f0xfh>0 : return bisect (f,f0 ,h,x1)
return bisect (f,f0,x0,h)

Having defined all the building blocks, we set the sdof parameters,

mass=1000. # kg

k=40000. # N/m

zeta=0.03 # damping ratio

damp=2*zetaxmass*sqrt (k/mass)

fy =2500. # N, the yielding force in the spring
xy=fy /k # m, the displacement of 1st wyield

and the characteristics of the loading

£1=0.3 # s

w=pi/tl # rad/s

Po=6000. # N

To compute the response functions and start our computation we need the
initial elastic response functions and, with null initial conditions, we set

x0=0.0 #m

v0=0.0 # m/s

x_next ,v_next=resp_elas (mass,damp,k, 0.0,Po,w, 0.0, x0,v0)
Before starting, we compute the time ¢, for which the yield take place,

t_yield=bisect (x_next ,xy,0.0,t1,1)

Because t, < t;, I decided the time interval (0,¢,) where the response is
linear. In every program it is sadly necessary to generate some output, here
I print 101 time-displacement points

dtau=(t_yield —0.0)/100.
for i in range (0,101):
tau=dtau*i
t=tau+0.0
print t, x_next(tau)

At this point, t = t,, the spring is yielding: we find the new initial
conditions,
x0=x_next (tau) ; vO0=v_next(tau)
the new load coefficients, with 7 = t—t,,, we have that p(7) = (cos(wt,) sin(7)+
sin(wt,) cos(1)) Py
cS=cos (wxtau)*Po
cC=sin (wxtau)=*Po
and the new response functions.
x_next ,v_next=resp_yield (mass,damp, cC,cS,w, —fy, x0,v0)

Note that the constant force in the function call above is opposite to the
yielding force, as the yielded spring continues to exert the yielding force on
the mass.

The upper limit of validity of this response is the smaller time between
t1, where the load changes, and t,—y, where we could go back in the elastic
phase. In this case, the interval of validity is (¢,,t1), as I found by inspection.

Let’s print some points in this interval,

4

dt=(t1—t_yield)/100.

for i in range(101):
tau=ixdt
t=tau+t_yield
print t, x_next(tau)

Now, t = t; and p = 0, we must change the response functions because
the external load changed.
cS=0.0 ; cC=0.0
x0=x_next (tau)
vO0=v_next (tau)

x_next ,v_next=resp_yield (mass,damp, cC,cS,w, —fy, x0,v0)

Now, the spring is yielded and the velocity is positive, we’ll remain in this
yielding phase until the velocity equals zero, so we find this phase change time

t2=t1+bisect (v_next, 0.0, 0, 0.3, 1.0)
having found ¢, we print 101 points in this interval
dt=(t2—t1)/100
for i in range(101):

tau=1x*dt

t=tau+tl
print t, x_next(tau)

Now the velocity is 0.0, going back to elastic behaviour... note the use of a
constant force to model the permanent displacement.

x0=x_next (tau) ; v0=0.0
x_next ,v_next=resp_elas (mass,damp,k, 0.0,0.0,w, kxx0—fy, x0,v0)

Finally, we print some points following the return of the sdof in the elastic
phase.

dt=(4.0—t2)/200

for i in range(201):
tau=ix*dt
t=tau+t2
print t, x_next(tau)

A similar program can be written to compute the indefinitely elastic re-
sponse, the results are in the following figures, the first one shows in more
detail the yielding phase, highlighting ¢, ~ 0.203s and z, = 0.0625cm, the

5

time and displacement of fist yielding, the second one highlighting the differ-
ences in the free response, namely a) the permanent yielding displacement
and b) the different amplitudes of the vibrations, associated with the higher
dissipation of energy that takes place in the yielded oscillator.

m=1000kg, k=40kN/m, {=3%, f,=2.5kN, p=x<t, ?P sin(pi t/t;):0, P=6kN, t,;=0.3s

0.25 I
Elastic response --——----
E-Plastic response
0.2

0.15 P .
[} / \\\\
£ 0.1 :
[0} .
1S .
2 0.0625 .
g N
g 0.05 |
[0} .
g \
et .
[=% .
K] 0 \
a -

-0.05

-0.1 .

-0.15 . >

0 0.203 04 0.6 08 1

Time, seconds

m=1000kg, k=40kN/m, {=3%, f,=2.5kN, p=x<t,?P sin(pi t/t;):0, P=6kN, t;=0.3s
0.25

T T
Elastic response -
E-Plastic response
0.15
. o
[\
\ / \
/
9 \ y \
= 0.1 | 7 " TN -
2 | / \ / \ RN
1S t / | / SN
1 ! \ I \ ! \
- \ 1 \ / \ /
= \ | ! / \ /
c \ i \ / \ K \
o 005 \ , \ ; \ :
£ \ I | / \ ! \
] \) / \ |
] \ | \ i \ ! \
et ! ! | ! | / \
2 | ! | ! | ! \
al 0 |
2 ' ! ; " ; "
a \ | | | \ | \
\ 1 1 1 \ H \
\ / \ i \ / \
\ ! \ I \ J \
\ ’r \ Il \‘ 1 \
\ /
O 05 \ 1 ' 1 1 /l \
-U. i 1 1\ 7 <
\ i \ i \ ! N /|
) 1 \ 1 \ v \ /
\ 1 ' i \ \ /
\ ! Y ; \ i N
1 1 \ 1 \ / -
-0.1 \ : S =
- \ i \ ’
\\ h \\,//
v
.
\

0.5 1 15 2 25 3 35 4
Time, seconds

