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Introductory Remarks

Consider an undamped system with two masses and two degrees of
freedom,

k1 k2 k3
m1 m2

x1 x2

p1(t) p2(t)

write the equation of equilibrium, using the D’Alembert principle, for
each mass:

k2(x2 − x1) k3x2

p2

m2ẍ2

m1ẍ1 + (k1 + k2)x1 − k2x2 = p1(t)

k2(x1 − x2)k1x1

p1

m1ẍ1

m2ẍ2 − k2x1 + (k2 + k3)x2 = p2(t)
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The equation of motion of a 2DOF system

With some little rearrangement we have a system of two
linear differential equations in two variables, x1(t) and x2(t):

{
m1ẍ1 + (k1 + k2)x1 − k3x2 = p1(t)

m1ẍ1 − k2x1 + (k2 + k3)x2 = p2(t).
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The equation of motion of a 2DOF system

Introducing the loading vector p, the vector of inertial forces
fI and the vector of elastic forces fS,

p =

{
p1(t)
p2(t)

}
, fI =

{
fI,1
fI,2

}
, fS =

{
fS,1
fS,2

}

we can write a vectorial equation of equilibrium:

fI + fS = p(t).
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fS = Kx

It is possible to write the linear relationship between fS and the vector
of displacements

x =

{
x1
x2

}
,

in terms of a matrix product

fS =

[
k1 + k2 −k2
−k2 k2 + k3

]
x

or, introducing the stiffness matrix K,

K =

[
k− 1+ k2 −k2

−k2 k2 + k+ 3

]
,

we can write
fS = Kx
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fI =Mẍ

Analogously, introducing the mass matrix M

M =

[
m1 0
0 m2

]

we can write
fI =Mẍ.
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Matrix Equation

Finally it is possible to write the equation of motion in
matricial format:

Mẍ+Kx = p(t).

In the following we will see how it is possible to consider the effects of
damping introducing a damping matrix C and writing

Mẍ+C ẋ+Kx = p(t),

however it is now more productive fixing our attention on undamped
systems.
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Properties of K

I if K were symmetrical, the force on mass j due to an
unit displacement of mass i would be equal to the force
on mass i due to an unit displacement of mass j; as this
is true because the two masses are joined by the same
spring, we have that K is symmetrical.

I The strain energy V for a discrete system can be written

V =
1

2
xT fS =

1

2
xTKx,

because the strain energy is positive it follows that K is
a positive definite matrix.
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Properties of M

Restricting our discussion to systems whose degrees of
freedom are the displacements of a set of discrete masses, we
have that the mass matrix is a diagonal matrix, with all its
diagonal elements greater than zero. Such a matrix is
symmetrical and definite positive, as well as the stiffness
matrix is symmetrical and definite positive.
En passant, take note that the kinetic energy for a discrete
system is

T =
1

2
ẋTMẋ.
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Generalisation of previous results

The findings in the previous two slides can be generalised to
the structural matrices of generic structural systems, with
one exception.
For a general structural system, M could be semi-definite
positive, that is for some particular displacement vector the
kinetic energy could be zero.
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The problem

k1 = 2k, k2 = k; m1 = 2m, m2 = m;

p(t) = p0 sinωt.

k1

x1 x2

m2

k2

m1

p(t)
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The solution

· · ·
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The solution, graphically
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Homogeneous equation of motion

To understand the behaviour of a MDOF system, we start
writing the homogeneous equation of motion,

Mẍ+Kx = 0,

and use the technique of separation of variables

x(t) = ψ(A sinωt+ B cosωt)

where ψ is a fixed, unknown vector, named a shape vector.
Substituting in the equation of motion, we have

(
K−ω2M

)
ψ(A sinωt+ B cosωt) = 0
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Eigenvalues

The previous equation must hold for every value of t, so it
can be reduced to

(
K−ω2M

)
ψ = 0

We have a homogeneous linear equation, with unknowns ψi

and the matrix of coefficients that depends on the parameter
ω2.
The trivial solution being

ψ = 0,

different solutions are available when

det
(
K−ω2M

)
= 0

The eigenvalues of the MDOF system are the values of ω2

for which the above equation is verified.
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Eigenvectors

For a system with N degrees of freedom the expansion of
det
(
K−ω2M

)
is an algebraic polynomial of degree N in

ω2, whose roots, ω2
i , i = 1, . . . ,N are all real and greater

than zero.
Substituting one of the roots ω2

i in the characteristic
equation, (

K−ω2
iM

)
ψi = 0

each one of the N eigenvectors ψi can be computed, except
for an undetermined common scale factor.
A common choice for the normalisation of the eigenvectors is
normalisation with respect to the mass matrix,

ψT
iMψi = 1
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Initial Conditions

The most general expression (general integral) for the
displacement of an homogeneous system is

x(t) =

N∑

i=1

ψi(Ai sinωit+ Bi cosωit)

In the general integral there are 2N unknown constants of
integration, that must be determined in terms of the initial
conditions, usually expressed in terms of initial displacements
and initial velocities,
{
x(0) = x0

ẋ(0) = ẋ0
⇒

{
xi,0 =

∑N
j=1 ψijBj

ẋi,0 =
∑N

j=1ωjψijAj

for i = 1, . . . ,N,

where ψij is the i-nth component of ψj.
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OOOPS!

i forgot to link the pdf with the last week lesson... i will put
the link in place tonight, but if you don’t trust me, after the
class come here with your USB key, you’ll be welcome!
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Orthogonality - 1

Take into consideration two distinct eigenvalues, ω2
r and ω2

s,
and write the characteristic equation for each eigenvalue:

Kψr = ω2
rMψr

Kψs = ω2
sMψs

premultiply each equation member by the transpose of the
other eigenvector

ψT
sKψr = ω2

rψ
T
sMψr

ψT
rKψs = ω2

sψ
T
rMψs
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Orthogonality - 2

The term ψT
sKψr is a scalar, hence

ψT
sKψr =

(
ψT

sKψr

)T
= ψT

rK
T ψs

but K is symmetrical, KT = K and we have

ψT
sKψr = ψT

rKψs.

By a similar derivation

ψT
sMψr = ψT

rMψs.
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Orthogonality - 3

Substituting our last identities in the previous equations, we
have

ψT
rKψs = ω2

rψ
T
rMψs

ψT
rKψs = ω2

sψ
T
rMψs

subtracting member by member we find that

(ω2
r −ω

2
s) ψ

T
rMψs = 0

We started with the hypothesis that ω2
r 6= ω2

s, so for every
r 6= s we have that the corresponding eigenvectors are
orthogonal with respect to the mass matrix

ψT
rMψs = 0, for r 6= s.
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Orthogonality - 4

The eigenvectors are orthogonal also with respect to the
stiffness matrix:

ψT
sKψr = ω2

rψ
T
sMψr = 0, for r 6= s.

By definition
Mi = ψ

T
iMψi

and
ψT

i Kψi = ω
2
iMi.
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Eigenvectors are a base

The eigenvector are linearly independent, so for every vector x we can
write

x =

N∑

j=1

ψjqj, with qj =
ψT

jMx

Mj

because of orthogonality and, generalising,

x(t) =

N∑

j=1

ψjqj(t), ẍ(t) =

N∑

j=1

ψjq̈j(t),

xi(t) =

N∑

j=1

Ψijqj(t),

x(t) = Ψq(t), ẍ(t) = Ψq̈(t).

where q(t) is the vector of modal coordinates and Ψ, whose columns
are the eigenvectors, is the eigenvector matrix.
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EoM in Modal Coordinates...

Substitute in the equation of motion,

MΨq̈+KΨq = p(t)

premultiply by ΨT

ΨTMΨq̈+ΨTKΨq = ΨTp(t)

with obvious definitions

M?q̈+K? q = p?(t)
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... are N independent equations!

By the preceding obvious definitions we have that the generic
element of the starred matrices can be expressed in terms of
single eigenvectors,

M?
ij = ψ

T
iMψj = δijMi,

K?
ij = ψ

T
i Kψj = ω

2
iδijMi.

where δij is the Kroneker symbol,

δij =

{
1 i = j

0 i 6= j

Substituting in the equation of motion, with p?i = ψT
i p(t)

we have a set of uncoupled equations

Miq̈i +ω
2
iMiqi = p

?
i (t), i = 1, . . . ,N
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Initial Conditions Revisited

The initial conditions {
x(0) = x0

ẋ(0) = ẋ0

Consider, e.g., the initial displacements: we can write

x0 = Ψq0

premultiplying both members by ΨTM,

ΨTMx0 = Ψ
TMΨq0 =M

?q0

premultiplying by the inverse of M? and taking into account
that M? is diagonal,

q0 = (M?)−1ΨTMx0 ⇒ qi0 =
ψT

iMx0

Mi

analogously

q̇i0 =
ψi

TMẋ0

Mi
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2 DOF System

k1 = k, k2 = 2k; m1 = 2m, m2 = m;

p(t) = p0 sinωt.

k1

x1 x2

m2

k2

m1

p(t)

x =

{
x1
x2

}
, p(t) =

{
0
p0

}
sinωt,

M = m

[
2 0
0 1

]
, K = k

[
3 −2
−2 2

]
.
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Characteristic Equation

The characteristic equation is

∥∥K−ω2M
∥∥ =

∥∥∥∥
3k− 2ω2m −2k

−2k 2k−ω2m

∥∥∥∥ = 0.

Developing the determinant

(2m2)ω4 − (7mk)ω2 + (2k2)ω0 = 0

Solving the algebraic equation in ω2

ω2
1 =

k

m

7−
√
33

4
ω2

2 =
k

m

7+
√
33

4

ω2
1 = 0.31386

k

m
ω2

2 = 3.18614
k

m
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Eigenvectors

The first of the characteristic equation, substituting ω2
1, gives

k (3− 2× 0.31386)ψ11 − 2kψ21 = 0

while substituting ω2
2 gives

k (3− 2× 3.18614)ψ12 − 2kψ22 = 0

solving with ψ21 = ψ22 = 1 gives

ψ1 =

{
+0.84307
+1.00000

}
, ψ2 =

{
−0.59307
+1.00000

}
,

the unnormalized eigenvectors.
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Normalization

We compute first M1 and M2,

M1 = ψ
T
1Mψ1

=
{
0.84307, 1

} [2m 0
0 m

]{
0.84307

1

}

=
{
1.68614m, m

}{0.84307
1

}
= 2.42153m

M2 = 1.70346m

the adimensional normalisation factors are

α1 =
√
2.42153, α2 =

√
1.70346.

Applying the normalisation factors to the respective unnormalised
eigenvectors and collecting them in a matrix, we have the matrix of
normalized eigenvectors

Ψ =

[
+0.54177 −0.45440
+0.64262 +0.76618

]

Generalized
SDOF’s

Giacomo Boffi

Introductory
Remarks

The
Homogeneous
Problem

Modal Analysis

Examples
2 DOF System

Modal Loadings

The modal loading is

p?(t) = ΨT p(t)

= p0

[
+0.54177 +0.64262
−0.45440 +0.76618

] {
0
1

}
sinωt

= p0

{
+0.64262
+0.76618

}
sinωt
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Modal EoM

Substituting its modal expansion for x into the equation of
motion and premultiplying by ΨT we have the uncoupled
modal equation of motion

{
mq̈1 + 0.31386kq1 = +0.64262p0 sinωt

mq̈2 + 3.18614kq2 = +0.76618p0 sinωt

Note that all the terms are dimensionally correct. Dividing by
m both equations, we have





q̈1 +ω
2
1q1 = +0.64262

p0

m
sinωt

q̈2 +ω
2
2q2 = +0.76618

p0

m
sinωt
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Particular Integral

We set
ξ1 = C1 sinωt, ξ̈ = −ω2C1 sinωt

and substitute in the first modal EoM:

C1

(
ω2

1 −ω
2
)
sinωt =

p?1
m

sinωt

solving for C1

C1 =
p?1
m

1

ω2
1 −ω

2

with ω2
1 = K1/m ⇒ m = K1/ω

2
1:

C1 =
p?1
K1

ω2
1

ω2
1 −ω

2
= ∆

(1)
st

1

1− β2
1

with ∆(1)
st =

p?1
K1

= 2.047
p0

k
and β1 =

ω

ω1

of course

C2 = ∆
(2)
st

1

1− β2
2

with ∆(2)
st =

p?2
K2

= 0.2404
p0

k
and β2 =

ω

ω2
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Integrals
The integrals, for our loading, are thus





q1(t) = A1 sinω1t+ B1 cosω1t+ ∆
(1)
st

sinωt

1− β2
1

q2(t) = A2 sinω2t+ B2 cosω2t+ ∆
(2)
st

sinωt

1− β2
2

for a system initially at rest




q1(t) = ∆
(1)
st

1

1− β2
1

(sinωt− β1 sinω1t)

q2(t) = ∆
(2)
st

1

1− β2
2

(sinωt− β2 sinω2t)

we are interested in structural degrees of freedom, too... disregarding
transient




x1(t) =

(
ψ11

∆
(1)
st

1− β2
1

+ψ12
∆

(2)
st

1− β2
2

)
sinωt =

(
1.10926

1− β2
1

−
0.109271

1− β2
2

)
p0

k
sinωt

x2(t) =

(
ψ21

∆
(1)
st

1− β2
1

+ψ22
∆

(2)
st

1− β2
2

)
sinωt =

(
1.31575

1− β2
1

+
0.184245

1− β2
2

)
p0

k
sinωt


