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Introduction

We have a procedure for dynamic analysis of MDOF systems
based on modal superposition that is both simple and
efficient, simple because the modal response can be easily
computed with the most advantageous technique that is
available for SDOF systems, efficient because usually (we will
return on this) only the modal responses of a few lower
modes are required to accurately describe the structural
response.

As the structural matrices are easily assembled using the
FEM, our modal superposition procedure is ready to be
applied to structures with tenth, thousands or millions of
DOF's! except that we can compute the eigenpairs only
when the analyzed structure has two, three or maybe four
degrees of freedom...

Enter the various Matrix Iterations procedures!
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Equilibrium

First, we will see an iterative procedure whose outputs are
the first, or fundamental, mode shape vector and the
corresponding eigenvalue.

When an undamped system freely vibrates, the equation of
motion Is

Ky, = w%Mt_I)i.

In equilibrium terms, the elastic forces are equal to the
inertial forces when the systems oscillates with frequency w%
and mode shape .
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Proposal of an iterative procedure

Our iterative procedure will be based on finding a new
displacement vector x,, ; such that the elastic forces

fs = Kx;,; are in equilibrium with the inertial forces due to
the old displacement vector x,,, f| = WM x,,.

In equations,

2
K7_<n+1 — wiMXn'

Premultiplying by the inverse of K and introducing the
Dynamic Matrix, D = K='M

Xnt1 = w%K_lMl‘n - w%DXn'

It is evident that in the generative equation above we miss a

fundamental part, the square of the free vibration frequency

2
wy.
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The Matrix lteration Procedure, 1

This problem is solved considering the x,, as a sequence of normalized
vectors and introducing the idea of an unnormalized new displacement
vector, X, 1,

A

Xn—}—]_ = DXnv

note that we removed the explicit dependency on w?.
The normalized vector is obtained applying to X,,,; a normalizing
factor, §ni1,

A~

X _ Xn+1
An+41 — '
gn—!—l
but = w?’Dx,, = w?X = 1 _
u Xny1 = WiUX,, = WiX, 1, 5 w3

If we agree that, near convergence, X, ; = X,,, substituting in the
previous equation we have
X
= wi~c 7
7_<n+1

~ — (2
xn+1 ~ Xy = wy 7—(n+1

Of course the division of two vectors is not an option, so we want to

twist it into something useful.
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Normalization

First, consider x,, = Qi: in this case, for j =1,...,Nitis

2 2
Xn,j/xn+1,j = Wj.

Analogously for x,, # . it was demonstrated that

_ X X
~ min {#}gwfg_ max {#}
=1,..., N Xn+1,j ji=1,..., N Xn+1,j

A more rational approach would make reference to a proper
vector norm, so using our preferred vector norm we can write

oT
2 7—cn+1M7_<n

Wy

~Y ’

AT A
Xni1MX g

(if memory helps, this is equivalent to the R;; approximation, that we

introduced studying Rayleigh quotient refinements).
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Proof of Convergence, 1

Until now we postulated that the sequence x,, converges to
some, unspecified eigenvector P, now we will demonstrate
that the sequence converge to the first, or fundamental mode
shape,

Iim x, =..
n—oo ¥ l—l)l

Expand X, in terms of eigenvectors an modal coordinates:

Xo =W, q10 +W¥,q20 +WPq30+ -,

and the inertial forces, assuming that the system is vibrating
according to the fundamental frequency, are

fI,nzo = CU%M (1_|)1q1,0 + mquo —}—i3q3,0 + .. >

2 Wi 2 wi
=M wlilql,om—l-wﬂ_lquyoﬁ—i—... :
1 2
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Proof of Convergence, 2

The deflections due to these forces (no hat!, we have multiplied by w?)

are
2

w2
Xn1:K1M< wip, GI10 +w21P d20 5 +- )
2

observing that wszgj = Kl_l)j, substltutlng and simplifying K7'K =1,
w? w? w?
<1|) q10 3 +1|) 4207 +1|) 430 3 5 +- )
w3

applying again this procedure

w% 2 w? 2 w? 2
- (o (32) o () o ()" )
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Proof of Convergence, 3

Going to the limit,

[im =
n—oo mlql’o
because
2 n
_ w
lim L = 61)'

n—00 w)?

Consequently,
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Purified Vectors

If we know . and w? from the matrix iteration procedure it
is possible to compute the second eigenpair, following a
slightly different procedure.

Express the initial iterate in terms of the (unknown)
eigenvectors,

Xn—0 = ‘yﬂn:O
and premultiply by the (known) ilTM
P, Mx,,_o =Miq1n—0
solving for g1 n—o

P Mx,
Jin=0 = M, :

Knowing the amplitude of the 1st modal contribution to
X, We can write a purified vector,

ETLIO — 7_611:0 — ilql,ﬂ,:O'
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Convergence (7)

It is easy to demonstrate that using Yy, _,asour starting
vector

lim = —0, lim
n—)oogn mqun 0

because the initial amplitude of the first mode is null.

Due to numerical errors in the determination of fundamental
mode and in the procedure itself, using a plain matrix
iteration the procedure however converges to the 1st
eigenvector, so to preserve convergence to the 2nd mode it is
necessary that the iterated vector y_is purified at each step
mn.
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Purification Procedure

The purification procedure is simple, at each step the
amplitude of the 1st mode is first computed, then removed
from the iterated vector Y.

din =, My, /M,

N 1
gn—kl =D (En o ilq1:n> =D <I T Wl_l,ﬁgIM) En

Introducing the sweeping matrix S; =1 — MilililTM and
the modified dynamic matrix D, = DS4, we can write

N

Y g = DSlgTL = ngn.

This is known as matrix iteration with sweeps.
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Third Mode

Using again the idea of purifying the iterated vector, starting with the
knowledge of the first and the second eigenpair,

8,10 = D (Y, — 0,000 — 020
with gn1 as before and

don = Q;Mgn/Mz,

substituting in the expression for the purified vector

R 1 T 1 T
En+1 =D (I - Em1i1 M _Wiziz M)

A

S
The conclusion is that the sweeping matrix and the modified dynamic
matrix to be used to compute the 3rd eigenvector are

1
82 - Sl - Wi2i2 M, D3 - D S2.
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Generalization to Higher Modes

The results obtained for the third mode are easily generalised.
It is easy to verify that the following procedure can be used to compute
all the modes.

Define Sqg =1, takei =1,

1. compute the modified dynamic matrix to be used for mode 1,
D;=DS;

2. compute P, using the modified dynamic matrix;

3. compute the modal mass M; :QTMl_I);

4. compute the sweeping matrix S; that sweeps the contributions of
the first 1 modes from trial vectors,

1
Si = Sifl — WEIETM'

5. increment 1, GOTO 1.

Well, we finally have a method that can be used to compute all the

eigenpairs of our dynamic problems, full circle!
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Discussion

The method of matrix iteration with sweeping is not used in
production because

1. D is a full matrix, even if M and K are banded
matrices, and the matrix product that is the essential
step in every iteration is computationally onerous,

2. the procedure is however affected by numerical errors,

so, after having demonstrated that it is possible to compute
all the eigenvectors of a large problem using an iterative
procedure it is time to look for different, more efficient
iterative procedures.
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Introduction to Inverse lteration

Inverse iteration is based on the fact that the symmetric
stiffness matrix has a banded structure, that is a relatively

large triangular portion of the matrix is composed by zeroes
(the banded structure is due to the FEM model that implies
that in an equation of equilibrium the only non zero elastic
force coefficients are due to degrees of freedom pertaining to

FE that contains the degree of freedom for which the
equilibrium is written).
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Definition of LU decomposition

Every symmetric, banded matrix can be subjected to a so
called LU decomposition, that is, for K we write

K=LU

where L and U are, respectively, a lower- and an
upper-banded matrix.
If we denote with b the bandwidth of K, we have

1<

L=l with 1;; = 0 for

and
1>

U = |uy; with ui; = 0 for
[ Y j>i+b
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Twice the equations?

In this case, with w,, = D xn, the recursion can be written
L uKnJrl =Wy
or as a system of equations,

Ux, 11 =201
L§n+1 =Wy

Apparently, we have doubled the number of unknowns, but
the z;'s can be easily computed by the procedure of back
substitution.
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Back Substitution

Temporarily dropping the n and n + 1 subscripts, we can
write

(w1)/l11
(wo — 1o121) /122

z3 = (w3 — l3121 — U3022) /133

N
=
I

N
N
I
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Back Substitution

We have computed z by back substitution, we must solve
Ux = z but U is upper triangular, so we have

XN = (zn)/UNN
XN—1 = (ZN—1 — UN—1,NZN)/UN—-1 N—1

XN—2 = (ZN—z —UN—2,NZN — uN—2,N—1ZN—1)/uN—2,N—2

)j—1

XN—j = (2N — Z UN—j,N—kZN—k)/UN—j N—j,
k=0

For moderately large systems, the reduction in operations
count given by back substitution with respect to matrix
multiplication is so large that the additional cost of the LU
decomposition is negligible.
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Introduction to Shifts

Inverse iteration can be applied to each step of matrix
iteration with sweeps, or to each step of a different procedure
intended to compute all the eigenpairs, the matrix iteration
with shifts.

Matrix lteration

Giacomo Boffi

Introduction

Fundamental
Mode Analysis

Second Mode
Analysis

Higher Modes
Inverse lteration

Matrix lteration
with Shifts

Rayleigh
Methods

Subspace
Iteration




Matrix lteration with Shifts, 1

If we write

(U% = FL+7\11

where W is a shift and Ay is a shifted eigenvalue, the
eigenvalue problem can be formulated as

or

Ky, =k +A)M b,

(K—uM)p, =AM ..

If we introduce a modified stiffness matrix

K=K-—uM,

we recognize that we have a new problem, that has exactly
the same eigenvectors and shifted eigenvalues,

where

Ko, =AMo,,
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Matrix lteration with Shifts, 2

The shifted eigenproblem can be solved, e.g., by matrix iteration and the
procedure will converge to the smallest absolute value shifted eigenvalue
and to the associated eigenvector. After convergence is reached,

b, =9, Wi =N+ 1.

The convergence of the method can be greatly enhanced if the shift u is
updated every few steps during the iterative procedure using the current

best estimate of A;,

7—<n+1M7—<n

Al TlJrl - = A '
7_Cn—|—1M7_<n

to improve the modified stiffness matric to be used in the following

iterations,

K - K - )\'i.,TLJr].M

Much thought was spent on the problem of choosing the initial shifts,

so that all the eigenvectors can be computed in sequence without

missing any of them.
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Rayleigh Quotient for Discrete Systems

The matrix iteration procedures are usually used in conjunction with
methods derived from the Rayleigh Quotient method.

The Rayleigh Quotient method was introduced using distributed
flexibilty systems and an assumed shape function, but we have seen also
an example where the Rayleigh Quotient was computed for a discrete
system using an assumed shape vector.

The procedure to be used for discrete systems can be resumed as

x(t) = ¢Zgysin wt, x(t) = wpZy cos wt,

2Tmax = (U2QTM$, 2Vmax = QTng

equating the maxima, we have

=3

k*
= m*

w? =

oK
™™

k=3

where ¢ is an assumed shape vector, not an eigenvector.
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Ritz Coordinates

For a N DOF system, an approximation to a displacement
vector X can be written in terms of a set of M < N assumed
shape, linearly independent vectors,

¢, i=1...,M<N
and a set of Ritz coordinates z;, 1—1,..., M < N:

zzzgizi:d)g.
i

We say approximation because a linear combination of
M < N vectors cannot describe every point in a N-space.
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Rayleigh Quotient in Ritz Coordinates

We can write the Rayleigh quotient as a function of the Ritz
coordinates,

W2(z) = L2 KDz _ Klz)
T 2T g™Mepz ™(z)

but this is not an explicit fuction for any modal frequency...
On the other hand, we have seen that frequency estimates
are always greater than true frequencies, so our best

estimates are the the local minima of w?(z), or the points

where all the derivatives of w?(z) with respect to z; are zero:

., 0k(z) 4, _ 0m(z)
) m(z) —k(z)
ow (é): ali_ 0z; =0, fori=1,... M<N
az]- (m(z))Z

Matrix lteration

Giacomo Boffi

Introduction

Fundamental
Mode Analysis

Second Mode
Analysis

Higher Modes
Inverse lteration

Matrix lteration
with Shifts

Rayleigh

Methods
Rayleigh-Ritz
Metho

Subspace
Iteration

Reduced Eigenproblem

Observing that
k(z) = w?(z)m(z)
we can substitute into and simplify the preceding equation,

ok om
) — w?(2) m(z) =0, fori=1,..., M < N
aZi aZi
With the positions
K=0'K®, M=0'MQ®
we have B _ B
Kz)=z'Kz=) ) kiyzz
i
and
ok(z) — — om(z) —
0 2)Zki]‘2j = 2Kz, and, analogously, 0z, 2Mz.
Substituting these results in % — wz(g)aaﬁ—;?) = 0 we can write a

new eigenvector problem, in the M DOF Ritz coordinates space, with
reduced M x M matrices:

Kz—w*Mz=0.
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Modal Superposition?

After solving the reduced eigenproblem, we have a set of M
eigenvalues @7 and a corresponding set of M eigenvectors
z;. What is the relation between these results and the
eigenpairs of the original problem?
The w% clearly are approximations from above to the real
eigenvalues, and if we write @i = DZ; we see that, being
b, M, =2 @TM®z; = Misy;,
M

the approximated eigenvectors @i are orthogonal with

respect to the structural matrices and can be used in ordinary

modal superposition techniques.
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A Last Question

One last question: how many @? and 1Ii are effective
approximations to the true eigenpairs? Experience tells that
an effective approximation is to be expected for the first

M /2 eigenthings.

Matrix lteration

Giacomo Boffi

Introduction

Fundamental
Mode Analysis

Second Mode
Analysis

Higher Modes
Inverse lteration

Matrix lteration

with Shifts

Rayleigh

Methods
Rayleigh-Ritz
Metho

Subspace
Iteration




Block Matrix lteration

If we collect all the eigenvalues into a diagonal matrix A, we can write

the following equation,
K¥Y=MVA

where every matrix is a square, N x N matrix.

The Subspace Iteration method uses a reduced set of trials vectors,
packed in N x M matrix @, and applies the procedure of matrix
iteration to the whole set of trial vectors at once:

@, = K 1M @,.

We used, again, the hat notation to visualize that the iterated vectors
are not normalized by the application of the unknown A.
Should we proceed naively down this road, though, all the columns in

®,, would converge to the first eigenvector, subspace iteration being

only an expensive manner of applying matrix iteration without sweeps or

shifts...
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Subspace lteration

Different options that comes to mind:

1. force all step n non-normalized vectors to be orthogonal with
respect to M, difficult, essentially we have to solve an eigenvalue
problem...

2. use the step n non-normalized vectors as a reduced base for the
Rayleigh-Ritz procedure, solve an eigenvalue problem

whose outcome A, Z, is correlated to the structural eigenvalues,
and use the normalized Z,, eigenvectors as the normalized,
un-hatted @, .
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Subspace Iteration, 2

The second procedure is exactly what we want: we use Z to
start an iteration that will lead to a new set of base vectors
that, being computed from the equation of dynamic
equilibrium, will be a better base for the successive
estimation of the eigenvectors, a new subspace where the
eigenvectors can be more closely approximated.
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Final Considerations

The procedure converges very fast and with excellent
approximation to a number of eigenvalues and eigenvector p,
p = M — q where q is the number of required guard
eigenpairs.

Experience shows that we can safely use ¢ = min{p, 8}.
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