Second Home Assignment

June 24, 2010

Contents

1	Differential support motion	1
2	Continuous system	2
3	Inelastic design	2

You must submit your paper before your oral examination.

1 Differential support motion

Figure 1: structural model

The system in figure 1 can be modeled as a SDOF system, disregarding the beam mass that is much less than the suspended mass M.

The system is excited by the horizontal motion of the external support in B (NB: the beam is continuous in B), namely $u_B = 3 \text{mm} \sin \omega t$.

Assume that axial and shear deformations are negligible with respect to the flexural deformations.

1. Determine the natural frequency of vibration.

- 2. Determine the influence matrix E.
- 3. Write the equation of motion.
- 4. Find the peak value of the bending moment in A.

The relevant parameters are:

- m = 18000 kg,
- L = 2m,
- $EJ = 3.6 MN m^2$,
- $\omega = 3 \cdot 2\pi$,
- $\zeta = 0.03.$

2 Continuous system

Figure 2: elastically supported beam

The beam in the figure 2 is clamped at the left end and it is supported by a spring at the right end, has constant unit mass m and constant flexural stiffness EJ.

Find the first and second frequencies of free vibration and plot the corresponding eigenfunctions for $k_{\text{spring}} = 2\frac{EJ}{L^3}$.

Find the first and second frequencies for $k_{\text{spring}} = \alpha \frac{EJ}{L^3}$ and plot in a log-lin diagram the eigenfrequencies $\omega_i(\alpha)$, i = 1, 2 for $10^{-3} < \alpha < 10^{+3}$.

3 Inelastic design

A SDOF system has a natural frequency of vibration $f_n = 2.5$ Hz and a yield strength $f_y = 0.60w$, where w is the system's weight.

Find the system's required ductility μ and its peak displacement x_m for a design maximum ground acceleration of 0.4g, knowing that the amplification factor for spectral accelerations (elastic) is $\alpha_A = 2.4$ and that the spectral region in which the system lies is the region where $A = \alpha_A \ddot{x}_{q0}$.

If we want to reduce by 10% the maximum displacement x_m , what should be done?