
Dynamics of Structures 2009-2010
1st home assignment

1 Impact

mb = 30 kg m
k

_xb = 40m/s

A body of mass mb = 30 kg hits an undamped SDOF system, of unknown
characteristics k and m, with velocity _xb = 40m s−1.

After collision the two masses are «glued» together and a measurement
of the ensuing free oscillations give the following results:

xmax = 48mm, _xmax = 240mms−1.

What is the natural frequency of vibration of the original single degree
of freedom system?

                                          Solution

The mass of the incoming body 30.000 kg
Its velocity 40.000 m/s

Its momentum 1200.000 kg m /s
The total momentum 1200.000 kg m /s

Maximum compound velocity 0.240 m/s
Compound mass 5000.000 kg

Original mass 4970.000 kg
max compound displ. 0.048 m

omega=vel_mx/displ_mx 5.000 rad/s
Omega^2 25.000

k/m_tot 25.000
k 125000.000 N/m

Omega_orig 5.015 rad/s
Freq 0.798 Hz
T_n 1.253 s
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2 Generalised Coordinates (rigid bodies)

4L L 2L

L
2
L

p0 sinωt

�m = �m1

γ = �m1

L

k

c

A

B

C

The articulated rigid system in figure is composed by two rigid bars,

� AB, with unit mass �m1,

� the massless BC;

and by a rigid square body that is solidal to BC, with unit mass γ = �m1/L.
The fixed constraints are a vertical roller in A, a hinge in C and an

internal hinge in B, the deformable constraints are a vertical spring in A,
its stiffness = k and a vertical dashpot in B, its damping coefficient = c.

The system is excited by an horizontal force, p(t) = po sinωt.
Using preferably the rotation of AB about A as the generalised coordi-

nate, write the equation of equilibrium of the system using the Principle of
Virtual Displacements.

oOo

Solution

Using the anti-clockwise rotation θ of AB about C (sorry for the misunder-
standing) as the generalised coordinate, the displacements (and velocities
and accelerations, writing _θ and �θ in place of θ) of the points where there
are applied forces are computed as in the following table
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x y u v

A −7L 0 0 −7θL

B −3L 3L −3θL −3θL

Gsq −L 2L −2θL −θL

GAB −5L 3
2L −3

2θL −5θL

All the rotations, particularly the rotations of the centres of mass, are
of course equal to θ.

A similar table can be written for the virtual displacements, and the
equation of motion is finally

−Msq

[
(−2�θL)(−2δθL) + (−�θL)(−δθL)

]
− Jsq(�θ)(δθ)

−MAB

[
(−
3

2
�θ)(−

3

2
δθ) + (−5�θL)(−5δθL)

]
− JAB(�θ)(δθ)

− c(−3 _θL)(−3δθL) − k(−7θL)(−7δθL) + p0(−3θL) = 0

Simplifying δθ, collecting �θ, _θ and θ and rearranging, the equation of
motion can now be written as(

5MsqL
2 +

109

4
MABL

2 + Jsq + JAB

)
�θ+ 9c _θL2 + 49kθL2 = −3p0L.

The values of masses and inertias can be expressed in terms of the unit
mass and unit length, that is

MAB = 5mL, JAB =MAB
(5L)2

12
=
125

12
mL3

Msq = 4mL, Jsq =Msq
(2L)2 + (2L)2

12
=
8

3
mL3,

so that substituting and simplifying in the equation of motion we finally
find

(
508

3
mL3)�θ+ (9L2c) _θ+ (49L2k)θ = −3p0L
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3 Generalised Coordinates (flexible systems)

L

EJ = const., �m = const.

p(x, t) = p0 sinωt

k = EJ
40L3

M = 12 �mL

The beam in figure, clamped at the left and supported by a spring at the
right, supports a dimensionless body at the right end.

The bending stifness and unit mass of the beam, EJ and �m, are constants,
the supported body has mass M = 12 �mL and the spring has stiffness k =
EJ

40L3 .
The beam-mass-spring system is excited by a spatially uniform, dis-

tributed load p(x, t) = p0 sinωt.
Using an appropriate shape function write the equation of motion of the

equivalent SDOF system.

Solution

As a first shot, lets use the dhape function appropriate for a cantilever beam,

φ(x) = 1− cos
πx

2L

so that, for harmonic free vibration, we have

v(x) = Z sinωtφ(x) = Z sinωt (1− cos
πx

2L
)

and the maximum of the kinetic energy and of the elastic energy can be
written

Tmax =
1

2

(
ω2Z2

∫L
0

mφ2(x)dx+ω2Z2M

)
,

Vmax =
1

2

(
Z2

∫L
0

EJφ ′′2(x)dx+ Z2k

)
,

so that, equating the two values, simplifying Z and solving for ω2 we have

ω2 =

∫L
0 EJφ

′′2(x)dx+ k∫L
0 mφ

2(x)dx+M
.
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We have, either from simple computations or from problem statement,
that ∫L

0

mφ2(x)dx =
(
3

2
−
4

π

)
mL = 0.2268mL, M = 12mL,∫L

0

EJφ ′′2(x)dx =
π4

32

EJ

L3
= 3.044

EJ

L3
, k =

1

40

EJ

L3
,

so that, substituting into the previous equation, we find

ω2 =
3.069

12.23

EJ

mL4
= 0.2510

EJ

mL4
.

The equation of motion can be written as
12.23mL �Z+ 3.069

EJ

L3
Z = po

∫L
0

φdx = (1−
2

π
)p0L = 0.3634p0L

v(x, t) = Z(t) (1− cos
πx

2L
).

4 Numerical Integration

A SDOF has the following characteristics:

k = 32 kNm−1,

m = 1800 kg,

ζ = 7%,

fy = 2.5 kN

and is subjected to a loading p(t),

p(t) = 30 kN

{
at+ 12(at)2 − 64(at)3, 0 6 t 6 0.25 s, with a = 1 s−1,

0 otherwise.

Disregarding the non-linear behaviour, for initial rest conditions, give the
exact equation of motion, x = x(t) and integrate numerically1 the equation
of motion with

1. the algorithm of central differences,
1Do not print all the intermediate results for every time step for every procedure.
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2. the algorithm of constant acceleration and

3. the algorithm of linear acceleration,

with time step h = 0.005 s in all three cases.
Plot the results of the numerical procedures and the exact solution.

Solution

The circular frequency is

ω =

√
k

m
=

√
32000

1800
=

√
160

9
= 4.21637

rad
s

,

the damped circular frequency is

ωD = ω
√
1− ζ2 = 4.206027

rad
s

and the damping coefficient is

c = 2ζωm = 2 · 0.07 · 4.21637 · 1800 = 1062.53N sm−1

The particular integral is written as

ξ(t) = A+ Bt+ Ct2 +Dt3

Deriving repeatedly ξ with respect to t, substituting in the equation of
motion and finally equating the coefficients of the powers of t in the two
members, one finds (with a = 1 s−1)

Dk = −64P0a
3 D = −60.0000 a3

Ck = +12P0a
2 − 3Dc C = +17.2267 a2

Bk = +1P0a
1 − 2Cc− 6Dm B = +20.0435 a1

Ak = +0P0a
0 − 1Bc− 2Cm A = −2.6035 a0

and the particular integral and its time derivative can be written as

ξ(t) = −2.6035+ 20.0435 at+ 17.2267 (at)2 − 60.0 (at)3,

_ξ(t) = a
[
20.0435119028+ 34.4534095554 at− 180 (at)2

]
.
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The general integral and its first time derivative are

x(t) = exp(−ζωt) (A cosωDt+ B sinωDt) + ξ(t),

_x(t) = exp(−ζωt) [(B cosωDt−A sinωDt)ωD − ζω (A cosωDt+ B sinωDt)] + _ξ(t).

Evaluating the general integral and its time derivative for t = 0, for rest
initial conditions one has

A− 2.6035 = 0, A = 2.6035,

ωDB− ζωA+ 20.0435 = 0. B = −4.58273.

Substituting the integration constants and all the numerical values in the
general integral,

x(t) = exp(−0.29t) (2.60 cos(4.21t) − 4.58 sin(4.21t)) + 20.04t+ 17.23t2 − 60t3 − 2.60

_x(t) = exp(−0.29t)(−9.60 sin(4.21t) − 20.04 cos(4.21t)) + 34.45t− 180t2 + 20.04

The equations above are valid for 0.00 s 6 t 6 0.25 s and it is x(0.25 s) =
0.051m and _x(0.25 s) = 0.428m s−1, so that imposing these values as the
initial conditions for the free response we easily find

xf(t) = exp(−ζωt)(0.051 cos(ωD(t− 0.25)) + 0.105 sin(ωD(t− 0.25)))

In the plot below, note that the spring experiences yielding during the
free response phase.
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Repeat the exercise keeping into account non-linear behaviour.
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Solution

We have seen that yielding occurs in the free response phase, so the equation
of motion is

m �x+ c _x = −k xy.

The integral of the homogeneous associate is

xh(t) = A exp(−
c

m
t) + B exp 0t = A exp(−

c

m
t) + B,

the particular integral is

ξ(t) = −
k xy

c
t

and the general integral is

x(t) = xh(t) + ξ(t) = A exp(−
c

m
t) + B−

k xy

c
t.

Yielding occurs when xf(t) = 2 500 /32 000m = 0.078 125m, hence for
t = ty = 0.321 075 s, and it is _xf(0.3210748) = 0.329 239m s−1.

Imposing this initial conditions, it is

xy(t) = 4.621850− 4.543725 exp(−0.590292(t− ty)) − 2.352885(t− ty),

_xy(t) = 2.682124 exp(−0.590292t) − 2.352885.

We leave the plastic phase when _xy(t) = 0, numerically te = 0.542 943 second,
and the initial conditions for the elastic response are

x(t− te) = xmax = 0.113 852m, _x(t− te) = 0.

It must be noted that the elastic force is fS = kx − k(xpl), with xpl =

xmax − xy0 = 0.113 852m− 0.078 125m = 0.035 727m.
With the above consideration taken into account, bimposing the initial

conditions it is

(0.078125 cosωD(t− te) + 0.0054822 sinωD(t− te)) exp−ζω(t− te)+0.035726745004
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5 MDOF System

L L L

L

A

B C D E

x1 x2 x3

m1 m2 m3

EJ = const.
m1 = 2m, m2 = m3 = 3m

EJ

mL3
= 2500 rad2 s−2

In the structure depicted above, the structural mass is negligible with re-
spect to the masses of the three supported bodies, so it is correct to use
the three DOF’s in the figure as the dynamical degrees of freedom of the
system.

1. Compute the flexibilty matrix2 F and the mass matrix3 M.

2. Compute all the eigenvalues and the eigenvectors of the 3 DOF system
using a method of your choice.

3. For non-null initial velocities

_x0 =
{
1 0 0

}T L

2500 s

compute the rotations in A.
2Disregarding axial deformability.
3Be careful, m11 6= m1!
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Solution

11

1/3

1/3

1

2/3

1

1/3

2/3

1

1/3 1/3L

1/
3L

1. The flexibility coefficients, see figure, are given by

f11 =

∫L
0

x
x

EJ
dx+

∫3L
0

x

3

x

3EJ
dx =

4

3

L3

EJ

f21 =

∫3L
0

x

3

x

3EJ
dx−

∫3L
2L

x

3

x− 2L

EJ
dx =

5

9

L3

EJ

f31 =

∫3L
0

x

3

x

3EJ
dx−

∫3L
L

x

3

x− L

EJ
dx =

4

9

L3

EJ

f22 =

∫L
0

2x

3

2x

3EJ
dx+

∫2L
0

x

3

x

3EJ
dx =

4

9

L3

EJ

f32 = 2

∫L
0

x

3

2x

3EJ
dx+

∫L
0

L+ x

3

2L− x

3EJ
dx =

7

18

L3

EJ

f33 = f22

f41 =

∫L
0

1
1x

EJ
dx+

∫3L
0

x

3L

x

3EJ
dx =

3

2

L2

EJ

f42 =

∫L
0

3L− x

3L

2x

3EJ
dx+

∫2L
0

x

3L

x

3EJ
dx =

5

9

L2

EJ

f43 =

∫L
0

x

3L

2x

3EJ
dx+

∫2L
0

3L− x

3L

x

3EJ
dx =

4

9

L2

EJ

The flexibility matrix is

F =
L3

18 EJ

24 10 8

10 8 7

8 7 8


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and, by inversion, the stiffness matrix is

K =
EJ

28 L3

 45 −72 18

−72 384 −264

18 −264 276

 .

Appropriately lumping masses in the first degree of freedom, the mass
matrix can be written as

M = m

8 0 0

0 3 0

0 0 3

 .

The dynamic matrix is D = FM,

D =
mL3

18 EJ

192 30 24

80 24 21

64 21 24

 .

2. The eigenvectors and the normalised eigenvalues �ω2
j (normalized with

respect to EJ/mL3 that is, ω2
j = �ω2

jω
0 = �ω2

j
EJ

mL3 ) can be calculated
using this short program

import s c ipy as sp

M = sp . mat( ’ 8 0 0 ; 0 3 0 ; 0 0 3 ’ )
F = sp . mat( ’ 24 10 8 ; 10 8 7 ; 8 7 8 ’ ) /18 .
K = sp . mat( ’ 45 −72 18 ; −72 384 −264 ; 18 −264 276 ’ ) /28 .
D = sp . mat( ’ 192 30 24 ; 80 24 21 ; 64 21 24 ’ ) /18 .
S = sp . eye (3 )

Psi = sp . mat( ’ 0 . 0 . 0 . ; 0 . 0 . 0 . ; 0 . 0 . 0 . ’ )
L = sp . mat( ’ 0 . 0 . 0 . ; 0 . 0 . 0 . ; 0 . 0 . 0 . ’ )

for n in (1 , 2 , 3 ) :
x0 = sp . mat( ’ 1 . ; 1 . ; 1 . ’ )
Dn = D�S
for j in range ( 1 0 ) :

x1 = Dn�x0
w2 = x0 [ 0 , 0 ] / x1 [ 0 , 0 ]
x0 = x1�w2
print w2 , x0 .T

x0 = x0/sp . sq r t ( ( x0 .T�M�x0 ) [ 0 , 0 ] )
Ps i [ : , n−1] = x0
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L [ n−1,n−1] = w2
print ’ Normalized ’
print w2 , x0 .T
print "−"�72
S = S − x0�x0 .T�M

dotx = sp . mat( ’ 1 . ; 0 . ; 0 . ’ )
dotq = Psi .T�M�dotx
Fred = sp . mat( ’ 27 10 8 ’ ) /18 .

print Fred�M�Psi � sp . s q r t (L)� sp . d i a g f l a t ( dotq )

that, when run, gives (with some omissis)

0.0731707317073 [[ 1. 0.50813008 0.44308943]]
0.0826150229486 [[ 1. 0.46585693 0.3915258 ]]
[...]
0.0836876786857 [[ 1. 0.46103734 0.38559605]]
0.0836876788132 [[ 1. 0.46103734 0.38559604]]
Normalized
0.0836876788132 [[ 0.33179371 0.15296929 0.12793834]]
------------------------------------------------------------------------
-5.04900698097 [[ 1. -2.78850732 -3.58162557]]
0.804082367184 [[ 1. -2.77579565 -3.59682426]]
[...]
0.803412108385 [[ 1. -2.77419027 -3.59874374]]
0.803412108253 [[ 1. -2.77419027 -3.59874374]]
Normalized
0.803412108253 [[ 0.11957304 -0.33171836 -0.43031272]]
------------------------------------------------------------------------
-5378.53603549 [[ 1. -18.02570814 14.6366017 ]]
7.17084583162 [[ 1. -18.02547142 14.63642813]]
[...]
7.17093592722 [[ 1. -18.02547142 14.63642813]]
Normalized
7.17093592722 [[ 0.02480368 -0.44709804 0.3630373 ]]
------------------------------------------------------------------------

3. The initial velocities vector can be written

_qx0 =
{
1 0 0

}T L

2500 s

=
{
1 0 0

}T
αLω0

where ω2
0 = EJ

mL3 and α = 1
ω02500 s

,
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hence the initial conditons in terms of modal coordinates are given by

_q0 = ΨTM _x0 =


2.6543

0.95658

0.19842

αLω0

and it is

q(t) = Λ− 1
2

2.654 0 0

0 0.95658 0

0 0 0.19842


sinω1t

sinω2t

sinω3t

αLω0 = Λ− 1
2Q·s(t)αLω0

the pseudo accelerations in modal coordinates, am(t) = Λq(t) are

am(t) = Λ+ 1
2Q · s(t)αLω0

the nodes’ pseudo accelerations are

an(t) = ΨΛ
1
2Q · s(t)αLω0

the equivalent static forces are

fst(t) =Man =MΨΛ
1
2Q · s(t)αLω0.

The rotation in A, θA, positive if clockwise, can be computed in terms
of equivalent static forces, as the matricial product

L2

18EJ

[
27 10 8

]
· fst = Fred · fst,

substituting our expression for the equivalent static force

φA = FredMΨΛ
1
2Q · s(t)αLω0.

With numerical values, it is

φA =
L2

EJ

[
3/2 5/9 4/9

]
m

8 0 0

0 3 0

0 0 3

 ·
0.3318 0.1196 0.0248

0.1530 −0.3317 −0.4471

0.1279 −0.4303 0.3630

 ω0

0.2893 0. 0.

0. 0.8963 0.

0. 0. 2.6779

 ·
2.654 0 0

0 0.95658 0

0 0 0.19842

 · s(t)αLω0.
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Observing that ω2
0
mL3

EJ = 1 and performing all the numerical matrix
multiplications,

φA(t) = α
{
3.3840568 0.26430948 0.01941107

}
sinω1t

sinω2t

sinω3t

 .

6 Rayleigh-Ritz & Subspace Iteration

x5

x4 x3

x2

x1

The structure depicted above can be analyzed as a shear type building. All
columns are equal, each with a lateral stiffness indicated by k. One of the
consequences of the previous statement is that the direct stiffness k11 is
equal to 8k, because the number of column that must be deformed to have
a unit displacement in x1 is 8.
The mass matrix is diagonal, with m11 = m22 = 3m and m33 = m44 =

m55 = m.
oOo

Find the first three eigenvalues and the first three
eigenvectors of the structure using the Rayleigh-
Ritz procedure with the Ritz base Φ̂0 indicated
on the right, denoting the Ritz coordinates eigen-
vector matrix with Z.

Φ̂0 =


+1 +1 +1

+2 +1 +1

+3 +0 −1

+3 +0 +1

+4 −1 +1


oOo

Do one subspace iteration, deriving a new set of Ritz base vectors,

Φ̂1 = K−1MΦZ0.

oOo
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Find the first three eigenvalues and the first three eigenvectors of the struc-
ture using the Rayleigh-Ritz procedure with the Ritz base Φ̂1.

oOo

Discuss the two set of results.

Solution

The structural matrices are given by

M = m


3 0 0 0 0

0 3 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , K = k


+8 −4 0 0 0

−4 +8 −2 −2 0

0 −2 +2 0 0

0 −2 0 +4 −2

0 0 0 −2 +2

 .

The reduced matrices are given by

Mz = Φ̂T
0MΦ̂0 = m

49 5 13

5 7 5

13 5 9

 , Kz = Φ̂T
0KΦ̂0 = k

14 −2 0

−2 10 8

0 8 12


and solving for the Ritz eigenvectors give

Λz =
k

m

0.2568 0 0

0 1.0962 0

0 0 2.3680

 ,

Z =

0.1325 0.0342 −0.1252

0.0362 0.4942 0.0287

0.0206 −0.3548 0.4022

 ,

Ψz = Φ̂0Z =


0.1893 0.1736 0.3057

0.3219 0.2078 0.1804

0.3771 0.4575 −0.7779

0.4182 −0.2521 0.0265

0.5145 −0.7121 −0.1275

 .
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For reference, the exact solutions are

Λ =
k

m


0.2527 0 0 0 0

0 1.0731 0 0 0

0 0 2.2957 0 0

0 0 0 4.0000 0

0 0 0 0 5.7119

 ,

Ψ =


0.1785 −0.1805 0.3825 0.3333 −0.1072

0.3232 −0.2157 0.1064 −0.3333 0.2447

0.3700 −0.4654 −0.7197 0.3333 −0.1319

0.4434 0.3107 0.0140 −0.3333 −0.7717

0.5075 0.6705 −0.0945 0.3333 0.4158

 .

To do a subspace iteration, first we compute the new base

Φ̂1 = K−1MΦ̂0Z =


0.7108 0.1594 0.1448

1.2796 0.1886 0.0604

1.4681 0.4173 −0.3285

1.7459 −0.2936 0.0099

2.0031 −0.6496 −0.0539


the new reduced matrices are,

Mz = Φ̂T
1MΦ̂1 = m

15.6443 −0.1373 −0.0320

−0.1373 +0.8652 −0.0016

−0.0320 −0.0016 +0.1848

 ,

Kz = Φ̂T
0KΦ̂0 = k

+3.9535 −0.0270 −0.0068

−0.0270 +0.9281 −0.0013

−0.0068 −0.0013 +0.4282


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and the solutions are

Λz =
k

m

0.2527 0.0000 0.0000

0.0000 1.0740 0.0000

0.0000 0.0000 2.3178

 ,

Z =

 0.2528 0.0101 0.0049

−0.0028 1.0758 0.0063

−0.0009 −0.0030 2.3266

 ,

Ψz = Φ̂0Z =


0.1791 0.1782 0.3415

0.3229 0.2156 0.1481

0.3703 0.4647 −0.7544

0.4422 −0.2982 0.0298

0.5082 −0.6785 −0.1196


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