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Dynamics of Structures?

Our aim is to develop some analytical and numerical
methods for the analysis of the stresses and deflections that
the application of a time varying set of loads induces in a
generic structure that moves in a neighborhood of a point of
equilibrium.
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Dynamics of Structures?

Our aim is to develop some analytical and numerical
methods for the analysis of the stresses and deflections that
the application of a time varying set of loads induces in a
generic structure that moves in a neighborhood of a point of
equilibrium.
We will see that these methods are extensions of the
methods of standard static analysis, or to say it better, that
static analysis is a special case of dynamic analysis.
If we restrict ourselves to analysis of linear systems,
however, it is so convenient to use the principle of
superposition to study the combined effects of static and
dynamic loadings that different methods, of different
character, are applied to these different loadings.
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Definitions

Dynamic something that varies over time

Dynamic Loading a Loading that varies over time

Dynamic Response the Response of a structural system to a
dynamic loading, expressed in terms of stresses and/or
deflections
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Types of Dynamic Analysis

Taking into account linear systems only, we must consider
two different definitions of the loading to define two types of
dynamic analysis
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Types of Dynamic Analysis
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two different definitions of the loading to define two types of
dynamic analysis

Deterministic Analysis the time variation of the loading is fully
known, and we can determine the complete time
variation of all the response quantities that are required
in our analysis

Non-deterministic Analysis when the time variation of the
loading is essentially random and is known only in terms
of some statistics, also the structural response can be
known only in terms of some statistics of the response
quantities.
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Types of Dynamic Analysis

Taking into account linear systems only, we must consider
two different definitions of the loading to define two types of
dynamic analysis

Deterministic Analysis the time variation of the loading is fully
known, and we can determine the complete time
variation of all the response quantities that are required
in our analysis

Non-deterministic Analysis when the time variation of the
loading is essentially random and is known only in terms
of some statistics, also the structural response can be
known only in terms of some statistics of the response
quantities.

Our focus will be on deterministic analysis
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Types of Dynamic Loadings

Dealing with deterministic loadings, we will study, in order of
complexity,

Introduction to Dynamics of Structures. October 3, 2008 – p. 6/17



Types of Dynamic Loadings

Dealing with deterministic loadings, we will study, in order of
complexity,

Harmonic Load the load is modulated by a harmonic function,
characterized by a frequency and a phase,
p(t) = p0 sin(ωt − ϕ)

Introduction to Dynamics of Structures. October 3, 2008 – p. 6/17



Types of Dynamic Loadings

Dealing with deterministic loadings, we will study, in order of
complexity,

Harmonic Load the load is modulated by a harmonic function,
characterized by a frequency and a phase,
p(t) = p0 sin(ωt − ϕ)

Periodic Load the load repeat itself with a fixed period T ,
p(t) = p(t + T )

Introduction to Dynamics of Structures. October 3, 2008 – p. 6/17



Types of Dynamic Loadings

Dealing with deterministic loadings, we will study, in order of
complexity,

Harmonic Load the load is modulated by a harmonic function,
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the load is described in terms of analytic functions,
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Types of Dynamic Loadings

Dealing with deterministic loadings, we will study, in order of
complexity,

Harmonic Load the load is modulated by a harmonic function,
characterized by a frequency and a phase,
p(t) = p0 sin(ωt − ϕ)

Periodic Load the load repeat itself with a fixed period T ,
p(t) = p(t + T )

Non Periodic Load here we see two sub-cases,
the load is described in terms of analytic functions,
p(t) = pof(t),
the load is experimentally measured, and is known
only in a discrete set of instants; in this case, we say that we

have a time-history.
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Characteristics of a Dynamical Problem

As both load and response vary over time, our methods of
analysis have to provide the dynamical problem solution for
every instant in the response.
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by the relevance of inertial forces, arising from the motion of
structural or serviced masses.
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Characteristics of a Dynamical Problem

As both load and response vary over time, our methods of
analysis have to provide the dynamical problem solution for
every instant in the response.
More fundamentally, a dynamical problem is characterized
by the relevance of inertial forces, arising from the motion of
structural or serviced masses.
A dynamic analysis is required only when the inertial forces
represent a significant portion of the total load, otherwise a
static analysis will suffice, even if the loads are (slowly)
varying over time.
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Formulation of a Dynamical problem

The inertial forces depend on deflections, the deflections
depend also on inertial forces, we have a loop and our line
of attack is of course to have a statement of the problem in
terms of differential equations.
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The inertial forces depend on deflections, the deflections
depend also on inertial forces, we have a loop and our line
of attack is of course to have a statement of the problem in
terms of differential equations.
If the mass is distributed along the structure, also the inertial forces are
distributed and the formulation of our problem must be in terms of partial
differential equations, to take into account the spatial variations of both loading
and response.
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Formulation of a Dynamical problem

The inertial forces depend on deflections, the deflections
depend also on inertial forces, we have a loop and our line
of attack is of course to have a statement of the problem in
terms of differential equations.
If the mass is distributed along the structure, also the inertial forces are
distributed and the formulation of our problem must be in terms of partial
differential equations, to take into account the spatial variations of both loading
and response.
If we can assume that the mass is concentrated in a discrete set of lumped
masses, the analytical problem is greatly simplified, because the inertial forces
are applied only at the lumped masses, and the deflections can be computed
at these points only, consenting the formulation of the problem in terms of a set
of ordinary differential equations, one for each component of the inertial forces.
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Dynamic Degrees of Freedom

The dynamic degrees of freedom (DDOF) in a discretized
system are the displacements components associated with
the significant inertial forces, in correspondance with the
lumped masses.
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The dynamic degrees of freedom (DDOF) in a discretized
system are the displacements components associated with
the significant inertial forces, in correspondance with the
lumped masses.
If the lumped mass can be considered dimensionless, then
3 DDOFs will suffice to represent the associated inertial
force.
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the significant inertial forces, in correspondance with the
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If the lumped mass can be considered dimensionless, then
3 DDOFs will suffice to represent the associated inertial
force. If the lumped mass must be considered with finite
dimensions, then we have also inertial couples, and we
need 6 DDOFs to represent the inertial force.
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Dynamic Degrees of Freedom

The dynamic degrees of freedom (DDOF) in a discretized
system are the displacements components associated with
the significant inertial forces, in correspondance with the
lumped masses.
If the lumped mass can be considered dimensionless, then
3 DDOFs will suffice to represent the associated inertial
force. If the lumped mass must be considered with finite
dimensions, then we have also inertial couples, and we
need 6 DDOFs to represent the inertial force.
Of course, a continuous system has an infinite number of
degrees of freedom.
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Generalized Displacements

The lumped mass procedure that we have outlined is
effective if a large proportion of the total mass is
concentrated in a few points.

Introduction to Dynamics of Structures. October 3, 2008 – p. 10/17



Generalized Displacements

The lumped mass procedure that we have outlined is
effective if a large proportion of the total mass is
concentrated in a few points.
A primary example is a multistorey building, where one can
consider a lumped mass in correspondence of each storey.
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The lumped mass procedure that we have outlined is
effective if a large proportion of the total mass is
concentrated in a few points.
A primary example is a multistorey building, where one can
consider a lumped mass in correspondence of each storey.
When the mass is distributed, we can simplify our problem
using generalized coordinates. The deflections are
expressed in terms of a linear combination of assigned
functions of position, with the coefficients of the linear
combination being the generalized coordinates. E.g., the
deflectlions of a rectilinear beam can be expressed with a
trigonometric series.
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Generalized Displacements, cont.

To fully describe a displacement field, we need to combine
an infinity of linearly indipendent base functions, but in
practice a good approximation can be achieved using only a
small number of functions and degrees of freedom.
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Generalized Displacements, cont.

To fully describe a displacement field, we need to combine
an infinity of linearly indipendent base functions, but in
practice a good approximation can be achieved using only a
small number of functions and degrees of freedom.
Even if the method of generalized coordinates has its
beauty, we must recognise that for each different problem
we should derive an ad hoc formulation, without generality.
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Finite Element Method

The finite elements method (FEM) combines aspects of
lumped mass and generalized coordinates methods,
providing a simple and reliable method of analysis, that is
easily programmed on a digital computer.
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Finite Element Method

The finite elements method (FEM) combines aspects of
lumped mass and generalized coordinates methods,
providing a simple and reliable method of analysis, that is
easily programmed on a digital computer.
in FEM, we use a piecewise approximation to displacements
which depend, in a finite portion of the structure, from the
displacements component of the nodal points that surround
that particular portion or element, using interpolation
functions.
The nodal degrees of freedom are the DDOFs.
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Finite Element Method

The finite elements method (FEM) combines aspects of
lumped mass and generalized coordinates methods,
providing a simple and reliable method of analysis, that is
easily programmed on a digital computer.
in FEM, we use a piecewise approximation to displacements
which depend, in a finite portion of the structure, from the
displacements component of the nodal points that surround
that particular portion or element, using interpolation
functions.
The nodal degrees of freedom are the DDOFs.
The desired level of approximation can be achieved simply, by further
subdiving the structure. Another nice feature is that the resulting equations are
only loosely coupled, leading to an easier computer solution
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Writing the eq. of motion

In a deterministic d. analysis, given a prescribed load, we want to evaluate the
displacements in each instant of time.
In most cases, a limited number of DDOFs gives a sufficient accuracy, and in
general the d. problem can be reduced to the determination of the
time-histories of some selected component of displacements,
The mathematical expression that define the dynamic displacements are
known as the Equations of Motion (EOM), the solution of the EOM gives the
requested displacements.
The formulation of the EOM is the most important, often the most difficult part
of our task of dynamic analysts.
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Writing the EOM, cont.

We have a choice of techniques to help us in writing the
EOM, namely:

the D’Alembert Principle,
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1 DOF System

Structural dynamics is all about a motion in the neighbourhood of a point of
equilibrium.
We’ll start by studying a generic single degree of freedom system, with
constant mass m, subjected to a non-linear generic force F = F (y, ẏ), where y

is the displacement and ẏ the velocity of the particle. The equation of motion is

ÿ =
1

m
F (y, ẏ) = f(y, ẏ)

.
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1 DOF System

Structural dynamics is all about a motion in the neighbourhood of a point of
equilibrium.
We’ll start by studying a generic single degree of freedom system, with
constant mass m, subjected to a non-linear generic force F = F (y, ẏ), where y

is the displacement and ẏ the velocity of the particle. The equation of motion is

ÿ =
1

m
F (y, ẏ) = f(y, ẏ)

.
It is difficult to integrate the above equation in the general case, but it’s easy
when the motion occurs in a small neighbourhood of the equilibrium position.
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1 DOF System, cont.

In a position of equilibrium, yeq, the velocity and the acceleration are zero, and
hence f(yeq, 0) = 0.
The force can be linearized in a neighbourhood of yeq, 0:

f(y, ẏ) = f(yeq, 0) +
∂f

∂y
(y − yeq) +

∂f

∂ẏ
(ẏ − 0) + O(y, ẏ).
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In a position of equilibrium, yeq, the velocity and the acceleration are zero, and
hence f(yeq, 0) = 0.
The force can be linearized in a neighbourhood of yeq, 0:

f(y, ẏ) = f(yeq, 0) +
∂f

∂y
(y − yeq) +

∂f

∂ẏ
(ẏ − 0) + O(y, ẏ).

Assuming that O(y, ẏ) is small in a neighbourhood of yeq,

ẍ + aẋ + bx = 0

where x = y − yeq, a = −
∂f
∂ẏ

and b = −
∂f
∂y

.
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1 DOF System, cont.

In a position of equilibrium, yeq, the velocity and the acceleration are zero, and
hence f(yeq, 0) = 0.
The force can be linearized in a neighbourhood of yeq, 0:

f(y, ẏ) = f(yeq, 0) +
∂f

∂y
(y − yeq) +

∂f

∂ẏ
(ẏ − 0) + O(y, ẏ).

Assuming that O(y, ẏ) is small in a neighbourhood of yeq,

ẍ + aẋ + bx = 0

where x = y − yeq, a = −
∂f
∂ẏ

and b = −
∂f
∂y

.
In an infinitesimal nb of yeq, the equation of motion can be studied in terms of a
linear differential equation of second order!
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1 DOF System, cont.

A linear constant coefficient differential equation has the integral x = A exp(st),
that substituted in the equation of motion gives

s2 + as + b = 0

whose solutions are

s1,2 = −
a

2
∓

√

a2

4
− b.
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A linear constant coefficient differential equation has the integral x = A exp(st),
that substituted in the equation of motion gives

s2 + as + b = 0

whose solutions are

s1,2 = −
a

2
∓

√

a2

4
− b.

The general integral is

x(t) = A1 exp(s1t) + A2 exp(s2t).
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1 DOF System, cont.

A linear constant coefficient differential equation has the integral x = A exp(st),
that substituted in the equation of motion gives

s2 + as + b = 0

whose solutions are

s1,2 = −
a

2
∓

√

a2

4
− b.

The general integral is

x(t) = A1 exp(s1t) + A2 exp(s2t).

The nature of the solution depends on the sign of the real part of s1, s2.
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1 DOF System, cont.

If we write si = ri + ıqi, then we have

exp(sit) = exp(ıqit) exp(rit).

If one of the ri > 0, the response grows infinitely over time, even for an
infinitesimal perturbation of the equilibrium, so that in this case we have an
unstable equilibrium.
If both ri < 0, the response decrease over time, so we have a stable
equilibrium.
Finally, if both ri = 0 the s’s are imaginary, the response is harmonic with
constant amplitude.
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1 DOF System, cont.

If a > 0 and b > 0, both roots are negative or complex
conjugate with negative real part, the system is
asympotically stable.
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1 DOF System, cont.

If a > 0 and b > 0, both roots are negative or complex
conjugate with negative real part, the system is
asympotically stable.
If a = 0 and b > 0, the roots are purely imaginary, the
equilibrium is indifferent, the oscillations are harmonic.
If a < 0 or b < 0 at least one of the roots has a positive real
part, and the system is unstable.
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