
SDOF linear
oscillator

G. Boffi

Response to
Periodic Loading

Response to
Impulsive Loading

Response to
General Dynamic
Loadings

SDOF linear oscillator
Response to Periodic and Non-periodic Loadings

Giacomo Boffi

Dipartimento di Ingegneria Strutturale, Politecnico di Milano

March 25, 2010



SDOF linear
oscillator

G. Boffi

Response to
Periodic Loading

Response to
Impulsive Loading

Response to
General Dynamic
Loadings

Outline

Response to Periodic Loading
Introduction
Fourier Series Representation
Fourier Series of the Response
An example

Response to Impulsive Loading
Introduction
Response to Half-Sine Wave Impulse
Response for Rectangular and Triangular Impulses
Shock or response spectra
Approximate Analysis of Response Peak

Response to General Dynamic Loadings
Response to infinitesimal impulse
Numerical integration of Duhamel integral

Undamped SDOF systems
Damped SDOF systems



SDOF linear
oscillator

G. Boffi

Response to
Periodic Loading
Introduction

Fourier Series
Representation

Fourier Series of the
Response

An example

Response to
Impulsive Loading

Response to
General Dynamic
Loadings

Response to Periodic Loading



SDOF linear
oscillator

G. Boffi

Response to
Periodic Loading
Introduction

Fourier Series
Representation

Fourier Series of the
Response

An example

Response to
Impulsive Loading

Response to
General Dynamic
Loadings

Introduction

We know the analytical expression of the steady-state
response of a SDOF system, damped or undamped, for a
harmonic loading characterized by its amplitude p0 and its
circular frequency, ω.
A periodic loading is characterized by the identity

P(t) = P(t + T )

where T is the period of the loading, and ω1 = 2π
T is its

principal frequency.
Periodic loadings can be expressed as an infinite series of
harmonic functions using Fourier theorem. The steady-state
response can be expressed as an infinite series, too.
Due to the asymptotic behaviour of D(β; ζ) (D goes to zero
for large, increasing β) it is apparent that a good
approximation to the steady-state response can be obtained
using a limited number of low-frequency terms.
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Fourier Series
Using Fourier theorem any practical periodic loading can be
expressed as a series of harmonic loading terms, and we can
use the results deduced for harmonic loads to express the
periodic response of a SDOF as a series of harmonic
response terms.
Consider a loading of period Tp, its Fourier series is given by

p(t) = a0 +
∞∑

j=1
aj cosωj +

∞∑
j=1

bj sinωj , ωj = j ω1 = j 2πTp

When the loading function is known, the harmonic
amplitude coefficients have expressions:

a0 =
1

Tp

∫ Tp

0
p(t) dt,

aj =
2

Tp

∫ Tp

0
p(t) cosωjt dt, bj =

2
Tp

∫ Tp

0
p(t) sinωjt dt.
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Fourier Coefficients
If p(t) must be measured experimentally or computed
numerically, we may assume that it is possible
(a) to divide the period in N equal parts ∆t = Tp/N,
(b) measure or compute p(t) at a discrete set of instants

t1, t2, . . . , tN , with tm = m∆t,
obtaining a discrete set of values pm, m = 1, . . . ,N (note
that p0 = pN by periodicity).
Using the trapezoidal rule of integration, with p0 = pN we
can write, for example, the cosine-wave amplitude
coefficients,
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If p(t) must be measured experimentally or computed
numerically, we may assume that it is possible
(a) to divide the period in N equal parts ∆t = Tp/N,
(b) measure or compute p(t) at a discrete set of instants

t1, t2, . . . , tN , with tm = m∆t,
obtaining a discrete set of values pm, m = 1, . . . ,N (note
that p0 = pN by periodicity).
Using the trapezoidal rule of integration, with p0 = pN we
can write, for example, the cosine-wave amplitude
coefficients,

aj u
2∆t
Tp

N∑
m=1

pm cosωjtm

=
2
N

N∑
m=1

pm cos(jω1m∆t) =
2
N

N∑
m=1

pm cos jm 2π
N .
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Fourier Coefficients
If p(t) must be measured experimentally or computed
numerically, we may assume that it is possible
(a) to divide the period in N equal parts ∆t = Tp/N,
(b) measure or compute p(t) at a discrete set of instants

t1, t2, . . . , tN , with tm = m∆t,
obtaining a discrete set of values pm, m = 1, . . . ,N (note
that p0 = pN by periodicity).
Using the trapezoidal rule of integration, with p0 = pN we
can write, for example, the cosine-wave amplitude
coefficients,

It’s worth to note that the discrete function cos jm 2π
N is peri-

odic with period N.
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Exponential Form
The Fourier series can be written in terms of the
exponentials of imaginary argument,

p(t) =
∞∑

j=−∞
Pj exp iωjt

where the complex amplitude coefficients are given by

Pj =
1

Tp

∫ Tp

0
p(t) exp iωjt dt, j = −∞, . . . ,+∞.

For a sampled pm we can write, using the trapezoidal
integration rule and substituting tm = m∆t = m Tp/N,
ωj = j 2π/Tp:

Pj u
1
N

N∑
m=1

pm exp(−i 2π j m
N ),
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Undamped Response

We have seen that the steady-state response to the jth
sine-wave harmonic can be written as

xj =
bj
k

[
1

1− β2j

]
sinωjt, βj = ωj/ωn,

analogously, for the jth cosine-wave harmonic,

xj =
aj
k

[
1

1− β2j

]
cosωjt.

Finally, we write

x(t) =
1
k

a0 +
∞∑

j=1

[
1

1− β2j

]
(aj cosωjt + bj sinωjt)

 .
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Damped Response

In the case of a damped oscillator, we must substitute the
steady state response for both the jth sine- and cosine-wave
harmonic,

x(t) =
a0
k +

1
k

∞∑
j=1

2ajζβj + bj(1− β2j )

(1− β2j )2 + (2ζβj)2
sinωjt+

+
1
k

∞∑
j=1

−2bjζβj + aj(1− β2j )

(1− β2j )2 + (2ζβj)2
cosωjt.

As usual, the exponential notation is neater,

R(t) =
∞∑

j=−∞
Pj

1
(1− β2j ) + i(2ζβj)

exp iωjt
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Example
As an example, consider the loading
p(t) = max{p0 sin 2πt

Tp
, 0}

0

0.5 p0

p0

   0.0 0.5 Tp T 1.5 Tp 2Tp

p0 max[sin(2 π t/Tp),0.0]
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Example
As an example, consider the loading
p(t) = max{p0 sin 2πt

Tp
, 0}

a0 =
1

Tp

∫ Tp/2

0
po sin

2πt
Tp

dt =
p0
π
,

aj =
2

Tp

∫ Tp/2

0
po sin

2πt
Tp

cos 2πjt
Tp

dt =

0 for j odd
p0
π

[
2

1−j2
]

for j even,

bj =
2

Tp

∫ Tp/2

0
po sin

2πt
Tp

sin 2πjt
Tp

dt =

{p0
2 for j = 1
0 for n > 1.
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Example cont.
Assuming β1 = 3/4, from
p = p0

π

(
1 + π

2 sinω1t −
2
3 cos 2ω1t −

2
15 cos 4ω1t − . . .

)
with the dynamic amplifiction factors

D1 =
1

1− (134)2
=

16
7 ,

D2 =
1

1− (234)2
= −4

5 ,

D4 =
1

1− (434)2
= −1

8 , D6 = . . .

etc, we have

x(t) =
p0
kπ

(
1 +

8π
7 sinω1t +

8
15 cos 2ω1t +

1
60 cos 4ω1t + . . .

)
Take note, these solutions are particular solutions! you must
consider also the complementary solution to take into
account initial conditions.
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Nature of Impulsive Loadings

An impulsive load is characterized
I by a single principal impulse, and
I by a relatively short duration.

p(t)

t

I Impulsive or shock loads are of great importance for the
design of certain classes of structural systems, e.g.,
vehicles or cranes.

I Damping has much less importance in controlling the
maximum response to impulsive loadings because the
maximum response is reached in a very short time,
before the damping forces can dissipate a significant
portion of the energy input into the system.

I For this reason, in the following we’ll consider only the
undamped response to impulsive loads.
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Definition of Maximum Response

In general, when dealing with impulse response characterized
by its duration t0 we are interested either in

a the maxima of the absolute values of the response ratio
R(t) in 0 < t < t0, and in particular to the maximum
value or,

b if no such maxima exist, in the maximum value of the
free vibrations that are excited by the impulse.
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Half-sine Wave Impulse

The sine-wave impulse has expression

p(t) =

{
p0 sin πt

t0 = p0 sinωt for 0 < t < t0,
0 otherwise.

p0

0.5 p0

0

t00.5 t0   0.0

p(
t)

time

where ω = 2π
2t0 is the

frequency associated with the
load. Note that ω t0 = π.
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Response to sine-wave impulse

Consider an undamped SDOF initially at rest, with natural
circular frequency ωn and stiffness k. With reference to a
half-sine impulse with duration t0, the frequency ratio β is
ω/ωn = Tn/2t0.
Its response ratio in the interval 0 < t < t0 is

R(t) =
1

1− β2 (sinωt − β sin ωt
β

)

while for t > t0 the response ratio is

R(t) =
−β

1− β2
(

(1 + cos π
β

) sin(
π

β

t − t0
t0

) + sin π
β
cos(π

β

t − t0
t0

)

)
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Maximum response to sine impulse

(a) Since we are interested in the maximum response ratio
during the excitation, we need to know when velocity is zero
in the time interval 0 ≤ t ≤ t0; from

Ṙ(t) =
ω

1− β2 (cosωt − cos ωt
β

) = 0.

we can see that the roots are
ωt = ∓ωt/β + 2nπ, n = 0,∓1,∓2,∓3, . . . ; it is convenient
to substitute ωt = πα, where α = t/t0; substituting and
solving for α one has

α =
2nβ
β ∓ 1 , with n = 0,∓1,∓2, . . . , for 0 < α < 1.

The next slide regards the characteristics of these roots.
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α(β, n)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1/9 1/5 1/3 1

9 7 5 3 1 1/2

α 
|: 

ve
l=

0

β

2t0/Tn

α=t/t0

αmax(β,n): locations of response maxima,
αmax(β,n)=(2n β)/(β+1)

αmin(β,n): locations of response minima,
αmin(β,n)=(2n β)/(β-1)

αmax(β,+1)
αmax(β,-1)
αmax(β,+2)
αmax(β,-2)
αmax(β,+3)
αmax(β,-3)
αmax(β,+4)
αmax(β,-4)
αmax(β,+5)

αmin(β,+1)
αmin(β,-1)
αmin(β,+2)
αmin(β,-2)
αmin(β,+3)
αmin(β,-3)
αmin(β,+4)
αmin(β,-4)

I No roots of type αmin for n > 0;
I no roots of type αmax for n < 0;
I no roots for β > 1, i.e., no roots

for t0 <
Tn
2 ;

I only one root of type αmax for
1
3 < β < 1, i.e.,
Tn
2 < t0 <

3Tn
2 ;

I three roots, two maxima and one
minimum, for 1

5 < β < 1
3 ;

I five roots, three maxima and two
minima, for 1

7 < β < 1
5 ;

I etc etc.

In summary, to find the maximum of the response for an
assigned β < 1, one has (a) to compute all αk = 2kβ

β+1 until a
root is greater than 1, (b) compute all the responses for
tk = αkt0, (c) choose the maximum of the maxima.
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α(β, n)
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α 
|: 

ve
l=

0

β

2t0/Tn

α=t/t0

αmax(β,n): locations of response maxima,
αmax(β,n)=(2n β)/(β+1)

αmin(β,n): locations of response minima,
αmin(β,n)=(2n β)/(β-1)

αmax(β,+1)
αmax(β,-1)
αmax(β,+2)
αmax(β,-2)
αmax(β,+3)
αmax(β,-3)
αmax(β,+4)
αmax(β,-4)
αmax(β,+5)

αmin(β,+1)
αmin(β,-1)
αmin(β,+2)
αmin(β,-2)
αmin(β,+3)
αmin(β,-3)
αmin(β,+4)
αmin(β,-4)

I No roots of type αmin for n > 0;
I no roots of type αmax for n < 0;
I no roots for β > 1, i.e., no roots

for t0 <
Tn
2 ;

I only one root of type αmax for
1
3 < β < 1, i.e.,
Tn
2 < t0 <

3Tn
2 ;

I three roots, two maxima and one
minimum, for 1

5 < β < 1
3 ;

I five roots, three maxima and two
minima, for 1

7 < β < 1
5 ;

I etc etc.

In summary, to find the maximum of the response for an
assigned β < 1, one has (a) to compute all αk = 2kβ

β+1 until a
root is greater than 1, (b) compute all the responses for
tk = αkt0, (c) choose the maximum of the maxima.



SDOF linear
oscillator

G. Boffi

Response to
Periodic Loading

Response to
Impulsive Loading
Introduction

Response to Half-Sine Wave
Impulse

Response for Rectangular
and Triangular Impulses

Shock or response spectra

Approximate Analysis of
Response Peak

Response to
General Dynamic
Loadings

Maximum response for β > 1
For β > 1, the maximum response takes place for t > t0,
and its absolute value (see slide Response to sine-wave
impulse) is

Rmax =
β

1− β2
√

(1 + cos π
β

)2 + sin2 π
β
,

using a simple trigonometric identity we can write

Rmax =
β

1− β2
√
2 + 2 cos π

β

but
1 + cos 2φ = (cos2 φ+ sin2 φ) + (cos2 φ− sin2 φ) = 2 cos2 φ,
so that

Rmax =
2β

1− β2 cos
π

2β .
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Rectangular Impulse

Cosider a rectangular impulse of duration t0,

p(t) = p0
{
1 for 0 < t < t0,
0 otherwise.

The response ratio and its time derivative are

R(t) = 1− cosωnt, Ṙ(t) = ωn sinωnt,

and we recognize that we have maxima Rmax = 2 for
ωnt = nπ, with the condition t ≤ t0. Hence we have no
maximum during the loading phase for t0 < Tn/2, and at
least one maximum, of value 2∆st , if t0 ≥ Tn/2.
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Rectangular Impulse (2)

For shorter impulses, the maximum response ratio is not
attained during loading, so we have to compute the
amplitude of the free vibrations after the end of loading
(remember, as t0 ≤ Tn/2 the velocity is positive at t = t0!).

R(t) = (1−cosωnt0) cosωn(t− t0)+(sinωnt0) sinωn(t− t0).

The amplitude of the response ratio is then

A =
√

(1− cosωnt0)2 + sin2 ωnt0 =

=
√
2(1− cosωnt0) = 2 sin ωnt0

2 .
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Triangular Impulse

Let’s consider the response of a SDOF to a triangular
impulse, p(t) = p0 (1− t/t0) for 0 < t < t0. As usual, we
must start finding the minimum duration that gives place to
a maximum of the response in the loading phase, that is

R(t) =
1

ωnt0
sinωn

t
t0
− cosωn

t
t0

+ 1− t
t0
, 0 < t < t0.

Taking the first derivative and setting it to zero, one can see
that the first maximum occurs for t = t0 for
t0 = 0.37101Tn, and substituting one can see that Rmax = 1.
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Triangular Impulse (2)

For load durations shorter than 0.37101Tn, the maximum
occurs after loading and it’s necessary to compute the
displacement and velocity at the end of the load phase.
For longer loads, the maxima are in the load phase, so that
one has to find the all the roots of Ṙ(t), compute all the
extreme values and finally sort out the absolute value
maximum.
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Shock or response spectra

We have seen that the
response ratio is
determined by the ratio
of the impulse duration
to the natural period of
the oscillator.

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2

a

Dmax(a)

This plot is the response spectrum
for a rectangular loading.

One can plot the maximum displacement ratio Rmax as a
function of to/Tn for various forms of impulsive loads.
Such plots are commonly known as displacement-response
spectra, or simply as response spectra.
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Approximate Analysis

For long duration loadings, the maximum response ratio
depends on the rate of the increase of the load to its
maximum: for a step function we have a maximum response
ratio of 2, for a slowly varying load we tend to a quasi-static
response, hence a factor u 1
On the other hand, for short duration loads, the maximum
displacement is in the free vibration phase, and its amplitude
depends on the work done on the system by the loading
system at the end of loading. The response ratio depends
further on the maximum value of the load impulse, so we
can say that the maximum displacement is a more significant
measure of response.
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Approximate Analysis

For long duration loadings, the maximum response ratio
depends on the rate of the increase of the load to its
maximum: for a step function we have a maximum response
ratio of 2, for a slowly varying load we tend to a quasi-static
response, hence a factor u 1
On the other hand, for short duration loads, the maximum
displacement is in the free vibration phase, and its amplitude
depends on the work done on the system by the loading
system at the end of loading. The response ratio depends
further on the maximum value of the load impulse, so we
can say that the maximum displacement is a more significant
measure of response.
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Approximate Analysis (2)

An approximate procedure to evaluate the maximum
displacement for a short impulse loading is based on the
impulse-momentum relationship,

m∆ẋ =

∫ t0

0
[p(t)− kx(t)] dt.

When one notes that, for small t0, the displacement is of the
order of t20 while the velocity is in the order of t0, it is
apparent that the kx term may be dropped from the above
expression, i.e.,

m∆ẋ u
∫ t0

0
p(t) dt.
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Approximate Analysis (3)

Using the previous approximation, the velocity at time t0 is

ẋ(t0) =
1
m

∫ t0

0
p(t) dt,

and considering again a negligibly small displacement at the
end of the loading, x(t0) u 0, one has

x(t − t0) u
1

mωn

∫ t0

0
p(t) dt sinωn(t − t0).

Please note that the above equation is exact for an
infinitesimal impulse loading (and will be discovered again in
a few minutes).
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Approximate Analysis (3)

Using the previous approximation, the velocity at time t0 is

ẋ(t0) =
1
m

∫ t0

0
p(t) dt,

and considering again a negligibly small displacement at the
end of the loading, x(t0) u 0, one has

x(t − t0) u
1

mωn

∫ t0

0
p(t) dt sinωn(t − t0).

Please note that the above equation is exact for an
infinitesimal impulse loading (and will be discovered again in
a few minutes).
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Undamped SDOF

For an infinitesimal impulse, the impulse-momentum is
exactly p(τ) dτ and the response is

dx(t − τ) =
p(τ) dτ

mωn
sinωn(t − τ), t > τ,

and to evaluate the response at time t one has simply to
sum all the infinitesimal contributions for τ < t,

x(t) =
1

mωn

∫ t

0
p(τ) sinωn(t − τ) dτ, t > 0.

This relation is known as the Duhamel integral, and tacitly
depends on initial rest conditions for the system.
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Damped SDOF

The derivation of the equation of motion for a generic load
is analogous to what we have seen for undamped SDOF, the
infinitesimal contribution to the response at time t of the
load at time τ is

dx(t) =
p(τ)

mωD
dτ sinωD(t − τ) exp(−ζωn(t − τ)) t ≥ τ

and integrating all infinitesimal contributions one has

x(t) =
1

mωD

∫ t

0
p(τ) sinωD(t−τ) exp(−ζωn(t−τ)) dτ, t ≥ 0.
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Evaluation of Duhamel integral, undamped

Using the trig identity

sin(ωnt − ωnτ) = sinωnt cosωnτ − cosωnt sinωnτ

the Duhamel integral is rewritten as

x(t) =

∫ t
0 p(τ) cosωnτ dτ

mωn
sinωnt −

∫ t
0 p(τ) sinωnτ dτ

mωn
cosωnt

= A(t) sinωnt − B(t) cosωnt

where {
A(t) = 1

mωn

∫ t
0 p(τ) cosωnτ dτ

B(t) = 1
mωn

∫ t
0 p(τ) sinωnτ dτ
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Numerical evaluation of Duhamel integral,
undamped

Usual numerical procedures can be applied to the evaluation
of A and B, e.g., using the trapezoidal rule, one can have,
with AN = A(N∆τ) and yN = p(N∆τ) cos(N∆τ)

AN+1 = AN +
∆τ

2mωn
(yN + yN+1) .
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Evaluation of Duhamel integral, damped

For a damped system, it can be shown that

x(t) = A(t) sinωDt − B(t) cosωDt

with

A(t) =
1

mωD

∫ t

0
p(τ)

exp ζωnτ

exp ζωnt cosωDτ dτ ,

B(t) =
1

mωD

∫ t

0
p(τ)

exp ζωnτ

exp ζωnt sinωDτ dτ .
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Numerical evaluation of Duhamel integral,
damped

Numerically, using e.g. Simpson integration rule and
yN = p(N∆τ) cosωDτ ,

AN+2 = AN exp(−2ζωn∆τ)+

∆τ

3mωD
[yN exp(−2ζωn∆τ) + 4yN+1 exp(−ζωn∆τ) + yN+2]

N = 0, 2, 4, · · ·
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