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Introductory Remarks

Until now we assumed that our systems were composed by a
single mass, connected to a fixed reference by means of a
spring and a damper.
This is an unnatural restriction, and we will see that many
different systems can be studied as SDOF systems, either
exactly or under some simplifying assumption.
1. SDOF rigid body assemblages, where flexibility is

concentrated in a number of springs and dampers, can
be studied, e.g., using the Principle of Virtual
Displacements and the D’Alembert Principle.

2. simple structural systems can be studied, in an
approximate manner, assuming a fixed pattern of
displacements, whose amplitude (the single degree of
freedom) varies with time.
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Further Remarks on Rigid Assemblages

In rigid body assemblages the limitation to a single shape of
displacement is a consequence of the configuration of the
system, i.e., the disposition of supports and internal hinges.
When the equation of motion is written in terms of a single
parameter and its time derivatives, we recognise that the
terms that figure as coefficients in the equation of motion
can be regarded as the generalised properties of the
assemblage: generalised mass, damping and stiffness on left
hand, generalised loading on right hand.

m?ẍ+ c?ẋ+ k?x = p?(t)
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Further Remarks on Flexible Systems

In flexible systems an infinite variety of deformation patterns
is possible.
It is by assumption that we restrict the motion to a single
shape, but under this assumption the system configuration is
mathematically described by a single parameter, so that

I we can compute the generalised mass, damping, stiffness
properties of the SDOF system,

I our model can be analysed in exactly the same way as a
strict SDOF system.
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Final Remarks on Generalised SDOF Systems

From the previous comments, it should be apparent that
everything we have seen regarding the behaviour and the
integration of the equation of motion of proper SDOF
systems applies to rigid body assemblages and to SDOF
models of flexible systems, provided that we have the means
for determining the generalised properties of the complex
dynamical system under investigation.
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Assemblages of Rigid Bodies

I planar rigid bodies, that is Bi-dimensional bodies
constrained to move in a plane,

I flexibility is concentrated in discrete elements, that is
springs and dampers,

I rigid bodies are connected to a fixed reference and to
each other by means of springs, dampers and smooth,
bilateral constraints (read hinges, double pendulums and
rollers),

I inertial forces are distributed on all the surface of each
rigid body, but we can consider only their resultant

I a force applied to the centre of mass of the body,
proportional to acceleration and total mass M =

∫
dm

I a couple, proportional to angular acceleration and the
moment of inertia J of the rigid body,
J =

∫
(x2 + y2)dm.
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Rigid Bar

x

G

L

Unit mass m̄ = constant,
Length L,

Centre of Mass xG = L/2,

Total Mass m = m̄L,

Moment of Inertia J = m
L2

12
= m̄

L3

12
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Rigid Rectangle

G

y

a

b

Unit mass γ = constant,
Sides a, b

Centre of Mass xG = a/2, yG = b/2

Total Mass m = γab,

Moment of Inertia J = m
a2 + b2

12
= γ

a3b+ ab3

12
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Rigid Triangle

For a right triangle.

y

G

a

b

Unit mass γ = constant,
Sides a, b

Centre of Mass xG = a/3, yG = b/3

Total Mass m = γab/2,

Moment of Inertia J = m
a2 + b2

18
= γ

a3b+ ab3

36
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Rigid Oval

When a = b = D = 2R the oval is a circle.

x

y

a
b

Unit mass γ = constant,
Axes a, b

Centre of Mass xG = yG = 0

Total Mass m = γ
πab

4
,

Moment of Inertia J = m
L2

12
= m̄

L3

12
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trabacolo1

c k c k2 211

N

m  ,  J2 2

p(x,t) = P x/a f(t)

a 2 a a a a a

The mass of the left bar is m1 = m̄ 4a and its moment of
inertia is J1 = m1

(4a)2

12 = 4a2m1/3.
The maximum value of the external load is
Pmax = P 4a/a = 4P and the resultant of triangular load is
R = 4P × 4a/2 = 8Pa



Generalized
SDOF’s

Giacomo Boffi

Introductory
Remarks

Assemblage of
Rigid Bodies

Flexible Systems

Vibration
Analysis by
Rayleigh’s
Method

Selection of
Mode Shapes

Refinement of
Rayleigh’s
Estimates

Forces and Virtual Displacements

c1Ż
4

m1Z̈
2

3k1Z
4

c2Ż
2m2Z̈

3
kZ
3

NZ(t)

J2Z̈
3a

8Pa f(t)
J1Z̈
4a

δZ
4

δZ
2

3δZ
4

δZ 2δZ
3

δZ
3

δu

δθ2 = δZ/(3a)δθ1 = δZ/(4a)

u = 7a−4a cos θ1−3a cos θ2, δu = 4a sin θ1δθ1+3a sin θ2δθ2

δθ1 = δZ/(4a), δθ2 = δZ/(3a)

sin θ1 ≈ Z/(4a), sin θ2 ≈ Z/(3a)

δu =

(
1

4a
+

1

3a

)
ZδZ =

7

12a
ZδZ
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Principle of Virtual Displacements

c1Ż
4

m1Z̈
2

3k1Z
4

c2Ż
2m2Z̈

3
kZ
3

NZ(t)

J2Z̈
3a

8Pa f(t)
J1Z̈
4a

δZ
4

δZ
2

3δZ
4

δZ 2δZ
3

δZ
3

δu

δθ2 = δZ/(3a)δθ1 = δZ/(4a)

δWI = −m1
Z̈

2

δZ

2
− J1

Z̈

4a

δZ

4a
−m2

2Z̈

3

2δZ

3
− J2

Z̈

3a

δZ

3a

= −

(
m1

4
+ 4

m2

9
+

J1

16a2
+
J2

9a2

)
Z̈ δZ

δWD = −c1
Ż

4

δZ

4
−−c2ZδZ = −(c2 + c1/16) Ż δZ

δWS = −k1
3Z

4

3δZ

4
− k2

Z

3

δZ

3
= −

(
9k1
16

+
k2

9

)
ZδZ

δWExt = 8Pa f(t)
2δZ

3
+N

7

12a
ZδZ
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Principle of Virtual Displacements
For a rigid body in condition of equilibrium the total virtual work must
be equal to zero

δWI + δWD + δWS + δWExt = 0

Substituting our expressions of the virtual work contributions and
simplifying δZ, the equation of equilibrium is(

m1

4
+ 4

m2

9
+

J1

16a2
+
J2

9a2

)
Z̈+

+ (c2 + c1/16) Ż+

(
9k1
16

+
k2

9

)
Z =

8Pa f(t)
2

3
+N

7

12a
Z

Introducing the generalised properties m?, etc

m?Z̈+ c?Ż+ k?Z = p?f(t)

It is worth writing down the expression of k?:

k? =
9k1
16

+
k2

9
−

7

12a
N



Generalized
SDOF’s

Giacomo Boffi

Introductory
Remarks

Assemblage of
Rigid Bodies

Flexible Systems

Vibration
Analysis by
Rayleigh’s
Method

Selection of
Mode Shapes

Refinement of
Rayleigh’s
Estimates

Principle of Virtual Displacements
For a rigid body in condition of equilibrium the total virtual work must
be equal to zero

δWI + δWD + δWS + δWExt = 0

Substituting our expressions of the virtual work contributions and
simplifying δZ, the equation of equilibrium is(

m1

4
+ 4

m2

9
+

J1

16a2
+
J2

9a2

)
Z̈+

+ (c2 + c1/16) Ż+

(
9k1
16

+
k2

9

)
Z =

8Pa f(t)
2

3
+N

7

12a
Z

Introducing the generalised properties m?, etc
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Let’s start with an example...

Consider a cantilever, with varying properties m̄ and EJ,
subjected to a load that is function of both time t and
position x, also the transverse displacements v will be
function of time and position,

v = v(x, t)

H

p(x, t)

v(x, t)
x m̄ = m̄(x)

N

EJ = EJ(x)
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... and an hypothesis

To study the previous problem, we introduce an approximate model by
the following hypothesis,

v(x, t) = Ψ(x)Z(t),

that is, the hypothesis of separation of variables
Note that Ψ(x), the shape function, is adimensional, while Z(t) is
dimensionally a generalised displacement, usually chosen to characterise
the structural behaviour.
In our example we can use the displacement of the tip of the chimney,
thus implying that Ψ(H) = 1 because

Z(t) = v(H, t) and

v(H, t) = Ψ(H)Z(t)
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Principle of Virtual Displacements

For a flexible system, the PoVD states that, at equilibrium,

δWE = δWI.

The virtual work of external forces can be easily computed,
the virtual work of internal forces is usually approximated by
the virtual work done by bending moments, that is

δWI ≈
∫
Mδχ

where χ is the curvature and δχ the virtual increment of
curvature.
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δWE

The external forces are p(x, t), N and the forces of inertia fI;
we have, by separation of variables, that δv = Ψ(x)δZ and
we can write

δWp =

∫H
0
p(x, t)δv dx =

[∫H
0
p(x, t)Ψ(x) dx

]
δZ = p?(t) δZ

δWInertia =

∫H
0

−m̄(x)v̈δv dx =
∫H
0

−m̄(x)Ψ(x)Z̈Ψ(x) dx δZ

=

[∫H
0

−m̄(x)Ψ2(x) dx

]
Z̈(t) δZ = m?Z̈ δZ.

The virtual work done by the axial force deserves a separate
treatment...
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δWN

The virtual work of N is δWN = Nδu where δu is the variation of the
vertical displacement of the top of the chimney.
We start computing the vertical displacement of the top of the chimney
in terms of the rotation of the axis line, φ ≈ Ψ ′(x)Z(t),

u(t) = H−

∫H
0

cosφ dx =
∫H
0

(1 − cosφ) dx,

substituting the well known approximation cosφ ≈ 1 − φ2

2
in the above

equation we have

u(t) =

∫H
0

φ2

2
dx =

∫H
0

Ψ ′2(x)Z2(t)

2
dx

hence

δu =

∫H
0

Ψ ′2(x)Z(t)δZ dx =
∫H
0

Ψ ′2(x) dx ZδZ

and

δWN =

[∫H
0

Ψ ′2(x) dx N
]
ZδZ = k?G ZδZ
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δWInt

Approximating the internal work with the work done by
bending moments, for an infinitesimal slice of beam we write

dWInt =
1

2
Mv”(x, t) dx =

1

2
MΨ”(x)Z(t) dx

with M = EJ(x)v”(x)

δ( dWInt) = EJ(x)Ψ”2(x)Z(t)δZ dx

integrating

δWInt =

[∫H
0
EJ(x)Ψ”2(x) dx

]
ZδZ = k? ZδZ



Generalized
SDOF’s

Giacomo Boffi

Introductory
Remarks

Assemblage of
Rigid Bodies

Flexible Systems

Vibration
Analysis by
Rayleigh’s
Method

Selection of
Mode Shapes

Refinement of
Rayleigh’s
Estimates

Remarks

I the shape function must respect the geometrical
boundary conditions of the problem, i.e., both

Ψ1 = x
2 and Ψ2 = 1 − cos

πx

2H

are accettable shape functions for our example, as
Ψ1(0) = Ψ2(0) = 0 and Ψ ′

1(0) = Ψ
′
2(0) = 0

I better results are obtained when the second derivative of
the shape function at least resembles the typical
distribution of bending moments in our problem, so that
between

Ψ′′
1 = constant and Ψ2” =

π2

4H2
cos

πx

2H

the second choice is preferable.
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Ψ1 = x
2 and Ψ2 = 1 − cos

πx

2H

are accettable shape functions for our example, as
Ψ1(0) = Ψ2(0) = 0 and Ψ ′

1(0) = Ψ
′
2(0) = 0

I better results are obtained when the second derivative of
the shape function at least resembles the typical
distribution of bending moments in our problem, so that
between

Ψ′′
1 = constant and Ψ2” =

π2

4H2
cos

πx

2H

the second choice is preferable.
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Example

Using Ψ(x) = 1 − cos πx2H , with m̄ = constant and
EJ = constant, with a load characteristic of seismic
excitation, p(t) = −m̄v̈g(t),

m? = m̄

∫H
0
(1 − cos

πx

2H
)2 dx = m̄(

3

2
−

4

π
)H

k? = EJ
π4

16H4

∫H
0

cos2
πx

2H
dx =

π4

32

EJ

H3

k?G = N
π2

4H2

∫H
0

sin2 πx

2H
dx =

π2

8H
N

p?g = −m̄v̈g(t)

∫H
0

1 − cos
πx

2H
dx = −

(
1 −

2

π

)
m̄H v̈g(t)
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Vibration Analysis

I The process of estimating the vibration characteristics of
a complex system is known as vibration analysis.

I We can use our previous results for flexible systems,
based on the SDOF model, to give an estimate of the
natural frequency ω2 = k?/m?

I A different approach, proposed by Lord Rayleigh, starts
from different premises to give the same results but the
Rayleigh’s Quotient method is important because it
offers a better understanding of the vibrational
behaviour, eventually leading to successive refinements
of the first estimate of ω2.
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from different premises to give the same results but the
Rayleigh’s Quotient method is important because it
offers a better understanding of the vibrational
behaviour, eventually leading to successive refinements
of the first estimate of ω2.
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Vibration Analysis

I The process of estimating the vibration characteristics of
a complex system is known as vibration analysis.

I We can use our previous results for flexible systems,
based on the SDOF model, to give an estimate of the
natural frequency ω2 = k?/m?

I A different approach, proposed by Lord Rayleigh, starts
from different premises to give the same results but the
Rayleigh’s Quotient method is important because it
offers a better understanding of the vibrational
behaviour, eventually leading to successive refinements
of the first estimate of ω2.
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Rayleigh’s Quotient Method

Our focus will be on the free vibration of a flexible,
undamped system.

I inspired by the free vibrations of a proper SDOF we write

Z(t) = Z0 sinωt and v(x, t) = Z0Ψ(x) sinωt,

I the displacement and the velocity are in quadrature:
when v is at its maximum v̇ = 0 (hence V = Vmax,
T = 0) and when v = 0 v̇ is at its maximum (hence
V = 0, T = Tmax,

I disregarding damping, the energy of the system is
constant during free vibrations,

Vmax + 0 = 0 + Tmax
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Our focus will be on the free vibration of a flexible,
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I inspired by the free vibrations of a proper SDOF we write
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I the displacement and the velocity are in quadrature:
when v is at its maximum v̇ = 0 (hence V = Vmax,
T = 0) and when v = 0 v̇ is at its maximum (hence
V = 0, T = Tmax,

I disregarding damping, the energy of the system is
constant during free vibrations,

Vmax + 0 = 0 + Tmax
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Rayleigh’s Quotient Method

Our focus will be on the free vibration of a flexible,
undamped system.

I inspired by the free vibrations of a proper SDOF we write

Z(t) = Z0 sinωt and v(x, t) = Z0Ψ(x) sinωt,

I the displacement and the velocity are in quadrature:
when v is at its maximum v̇ = 0 (hence V = Vmax,
T = 0) and when v = 0 v̇ is at its maximum (hence
V = 0, T = Tmax,

I disregarding damping, the energy of the system is
constant during free vibrations,

Vmax + 0 = 0 + Tmax
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Rayleigh’s Quotient Method

Our focus will be on the free vibration of a flexible,
undamped system.

I inspired by the free vibrations of a proper SDOF we write

Z(t) = Z0 sinωt and v(x, t) = Z0Ψ(x) sinωt,

I the displacement and the velocity are in quadrature:
when v is at its maximum v̇ = 0 (hence V = Vmax,
T = 0) and when v = 0 v̇ is at its maximum (hence
V = 0, T = Tmax,

I disregarding damping, the energy of the system is
constant during free vibrations,

Vmax + 0 = 0 + Tmax
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Rayleigh’ s Quotient Method

Now we write the expressions for Vmax and Tmax,

Vmax =
1

2
Z2
0

∫
S

EJ(x)Ψ′′2(x) dx,

Tmax =
1

2
ω2Z2

0

∫
S

m̄(x)Ψ2(x) dx,

equating the two expressions and solving for ω2 we have

ω2 =

∫
S EJ(x)Ψ

′′2(x) dx∫
S m̄(x)Ψ2(x) dx

.

Recognizing the expressions we found for k? and m? we
could question the utility of Rayleigh’s Quotient...
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Rayleigh’s Quotient Method

I In Rayleigh’s method we know the specific time dependency of the
structure’s free vibrations and hence that, at least for constant
unit mass structures, the shape of the inertial forces

fI = −m̄v̈ = m̄ω2Z0Ψ(x) sinωt

is the same shape we use for displacements.
I Thinking backwards we can say that, if Ψ is the real shape

assumed by the structure in free vibrations, the displacements v
due to a loading fI = m̄(x)Ψ(x) are proportional to Ψ(x) through
a constant factor, and equilibrium is respected all over the
structure during free vibrations.

I Having deduced a new shape function Ψ1 from the displacements
due to a loading fI = m̄(x)Ψ0(x), we speculate that the new shape
function is a better approximation of the true mode shape. We
will demonstrate the correctness of this hypothesis.
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structure’s free vibrations and hence that, at least for constant
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is the same shape we use for displacements.
I Thinking backwards we can say that, if Ψ is the real shape

assumed by the structure in free vibrations, the displacements v
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structure during free vibrations.

I Having deduced a new shape function Ψ1 from the displacements
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function is a better approximation of the true mode shape. We
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Rayleigh’s Quotient Method

I In Rayleigh’s method we know the specific time dependency of the
structure’s free vibrations and hence that, at least for constant
unit mass structures, the shape of the inertial forces

fI = −m̄v̈ = m̄ω2Z0Ψ(x) sinωt

is the same shape we use for displacements.
I Thinking backwards we can say that, if Ψ is the real shape

assumed by the structure in free vibrations, the displacements v
due to a loading fI = m̄(x)Ψ(x) are proportional to Ψ(x) through
a constant factor, and equilibrium is respected all over the
structure during free vibrations.

I Having deduced a new shape function Ψ1 from the displacements
due to a loading fI = m̄(x)Ψ0(x), we speculate that the new shape
function is a better approximation of the true mode shape. We
will demonstrate the correctness of this hypothesis.
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Selection of mode shapes

Given different shape functions Ψi and considering the true
shape of free vibration Ψ, in the former cases equilibrium is
not respected by the structure itself.
To keep inertia induced deformation proportional to Ψi we
must consider the presence of additional elastic constraints.
This leads to the following considerations

I the frequency of vibration of a structure with additional
constraints is higher than the true natural frequency,

I the criterium to discriminate between different shape
functions is: better shape functions give lower estimates
of the natural frequency, the true natural frequency
being a lower bound of all estimates.
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Selection of mode shapes

Given different shape functions Ψi and considering the true
shape of free vibration Ψ, in the former cases equilibrium is
not respected by the structure itself.
To keep inertia induced deformation proportional to Ψi we
must consider the presence of additional elastic constraints.
This leads to the following considerations

I the frequency of vibration of a structure with additional
constraints is higher than the true natural frequency,

I the criterium to discriminate between different shape
functions is: better shape functions give lower estimates
of the natural frequency, the true natural frequency
being a lower bound of all estimates.
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Selection of mode shapes

Given different shape functions Ψi and considering the true
shape of free vibration Ψ, in the former cases equilibrium is
not respected by the structure itself.
To keep inertia induced deformation proportional to Ψi we
must consider the presence of additional elastic constraints.
This leads to the following considerations

I the frequency of vibration of a structure with additional
constraints is higher than the true natural frequency,

I the criterium to discriminate between different shape
functions is: better shape functions give lower estimates
of the natural frequency, the true natural frequency
being a lower bound of all estimates.
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Selection of mode shapes 2

In general the selection of trial shapes goes through two
steps,
1. the analyst considers the flexibilities of different parts of

the structure and the presence of symmetries to devise
an approximate shape,

2. the structure is loaded with constant loads directed as
the assumed displacements, the displacements are
computed and used as the shape function,

of course a little practice helps a lot in the the choice of a
proper pattern of loading...



Generalized
SDOF’s

Giacomo Boffi

Introductory
Remarks

Assemblage of
Rigid Bodies

Flexible Systems

Vibration
Analysis by
Rayleigh’s
Method

Selection of
Mode Shapes

Refinement of
Rayleigh’s
Estimates

Refinement R00

Choose a trial function Ψ(0)(x) and write

v(0) = Ψ(0)(x)Z(0) sinωt

Vmax =
1

2
Z(0)2

∫
EJΨ(0)′′2 dx

Tmax =
1

2
ω2Z(0)2

∫
m̄Ψ(0)2 dx

our first estimate R00 of ω2 is

ω2 =

∫
EJΨ(0)′′2 dx∫
m̄Ψ(0)2 dx

.
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Refinement R01

We try to give a better estimate of Vmax computing the external work
done by the inertial forces,

p(0) = ω2m̄(x)v(0) = Z(0)ω2Ψ(0)(x)

the deflections due to p(0) are

v(1) = ω2 v
(1)

ω2
= ω2Ψ(1)Z

(1)

ω2
= ω2Ψ(1)Z̄(1),

where we write Z̄(1) because we need to keep the unknown ω2 in
evidence. The maximum strain energy is

Vmax =
1

2

∫
p(0)v(1) dx =

1

2
ω4Z(0)Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx

Equating to our previus estimate of Tmax we find the R01 estimate

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(0) dx∫
m̄(x)Ψ(0)Ψ(1) dx
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Refinement R11

With little additional effort it is possible to compute Tmax from v(1):

Tmax =
1

2
ω2

∫
m̄(x)v(1)2 dx =

1

2
ω6Z̄(1)2

∫
m̄(x)Ψ(1)2 dx

equating to our last approximation for Vmax we have the R11

approximation to the frequency of vibration,

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx∫
m̄(x)Ψ(1)Ψ(1) dx

.

Of course the procedure can be extended to compute better and better
estimates of ω2 but usually the refinements are not extended beyond
R11, because it would be contradictory with the quick estimate nature of
the Rayleigh’s Quotient method and also because R11 estimates are
usually very good ones.
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.
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Refinement R11

With little additional effort it is possible to compute Tmax from v(1):

Tmax =
1

2
ω2

∫
m̄(x)v(1)2 dx =

1

2
ω6Z̄(1)2

∫
m̄(x)Ψ(1)2 dx

equating to our last approximation for Vmax we have the R11

approximation to the frequency of vibration,

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx∫
m̄(x)Ψ(1)Ψ(1) dx

.

Of course the procedure can be extended to compute better and better
estimates of ω2 but usually the refinements are not extended beyond
R11, because it would be contradictory with the quick estimate nature of
the Rayleigh’s Quotient method and also because R11 estimates are
usually very good ones.
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Refinement Example

m

1.5m

2m

k

2k

3k

Ψ(0)

1

11/15

6/15

1

1

1

1

1.5

2

Ψ(1)p(0)

ω2m

v(1) =
15

4

m

k
ω2Ψ(1)

Z̄(1) =
15

4

m

k
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