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Introductory Remarks

Consider an undamped system with two masses and two degrees of

freedom,
p1(t) pa(t)
jw{ M }M{ Mo M
kg o) @) ko @) @) ks

L L

X1 X2

write the equation of equilibrium, using the D'Alembert principle, for
each mass:
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The equation of motion of a 2DOF system

With some little rearrangement we have a system of two

linear differential equations in two variables, x1(t) and x,(t):

mixX1 + (k1 +ko)x1 —ksxo  =pi(t)
miX1 — koxg + (ko +k3)xo = po(t).
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The equation of motion of a 2DOF system

Introducing the loading vector p, the vector of inertial forces
f1 and the vector of elastic forces fg,

Pl(t)} {fn} {fs 1}
= , f = ! , f = !

P {Pz(t) ! 12 > fs,2
we can write a vectorial equation of equilibrium:

fi+fs =p(t).
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stKX

It is possible to write the linear relationship between fs and the vector
of displacements

in terms of a matrix product

[tk ko
fs_[sz kﬁkj"

or, introducing the stiffness matrix K,

K[k 1tk —k»
o —ko ko+k+3]|’

we can write
fs =Kx
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Analogously, introducing the mass matrix M

we can write
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Matrix Equation

Finally it is possible to write the equation of motion in
matricial format:

Mx + Kx =p(t).

In the following we will see how it is possible to consider the effects of
damping introducing a damping matrix C and writing

Mx 4+ Cx+Kx=p(t),

however it is now more productive fixing our attention on undamped

systems.
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Properties of K

» if K were symmetrical, the force on mass j due to an
unit displacement of mass 1 would be equal to the force
on mass i due to an unit displacement of mass j; as this
is true because the two masses are joined by the same
spring, we have that K is symmetrical.
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unit displacement of mass 1 would be equal to the force Vinear Operators
Properties of

on mass i due to an unit displacement of mass j; as this Structural

Matrices

is true because the two masses are joined by the same An exampla
. . . The
spring, we have that K is symmetrical. [——
Problem

» The strain energy V for a discrete system can be written Analyei

1 Examples

1
V — §foS — EXTKX,

because the strain energy is positive it follows that K is
a positive definite matrix.



Properties of M

Restricting our discussion to systems whose degrees of
freedom are the displacements of a set of discrete masses, we
have that the mass matrix is a diagonal matrix, with all its
diagonal elements greater than zero. Such a matrix is
symmetrical and definite positive, as well as the stiffness
matrix is symmetrical and definite positive.
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Properties of M

Restricting our discussion to systems whose degrees of
freedom are the displacements of a set of discrete masses, we
have that the mass matrix is a diagonal matrix, with all its
diagonal elements greater than zero. Such a matrix is
symmetrical and definite positive, as well as the stiffness
matrix is symmetrical and definite positive.

En passant, take note that the kinetic energy for a discrete
system is

1. )
T= §XTMX.
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Generalisation of previous results

The findings in the previous two slides can be generalised to
the structural matrices of generic structural systems, with
one exception.
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Generalisation of previous results

The findings in the previous two slides can be generalised to
the structural matrices of generic structural systems, with
one exception.

For a general structural system, M could be semi-definite
positive, that is for some particular displacement vector the
kinetic energy could be zero.
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ko

X1 X2
ki =2k, ky=k; m; =2m, mp=m;
p(t) = posin wt.
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Homogeneous equation of motion

To understand the behaviour of a MDOF system, we start
writing the homogeneous equation of motion,

Mx +Kx =0,
and use the technique of separation of variables
x(t) = P (Asin wt + B cos wt)

where 1 is a fixed, unknown vector, named a shape vector.
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Homogeneous equation of motion

To understand the behaviour of a MDOF system, we start
writing the homogeneous equation of motion,

Mx +Kx =0,
and use the technique of separation of variables
x(t) = P (Asin wt + B cos wt)

where 1 is a fixed, unknown vector, named a shape vector.
Substituting in the equation of motion, we have

(K — w?M) P(Asin wt + Bcoswt) =0
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Eigenvalues

The previous equation must hold for every value of t, so it
can be reduced to

(K—w?M) ¢ =0
We have a homogeneous linear equation, with unknowns {;

and the matrix of coefficients that depends on the parameter

w?.

The trivial solution being
P =0,
different solutions are available when

det (K — w2M) =0
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Eigenvalues

The previous equation must hold for every value of t, so it
can be reduced to

(K—w?M) ¢ =0
We have a homogeneous linear equation, with unknowns {;

and the matrix of coefficients that depends on the parameter

w?.

The trivial solution being
P =0,
different solutions are available when
det (K — w2M) =0

The eigenvalues of the MDOF system are the values of w?
for which the above equation is verified.
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Eigenvectors

For a system with N degrees of freedom the expansion of
det (K — w?M) is an algebraic polynomial of degree N in
w2, whose roots, w%, i=1,...,N are all real and greater
than zero.
Substituting one of the roots w? in the characteristic
equation,

(K—wiM) i =0

each one of the N eigenvectors {p; can be computed, except
for an undetermined common scale factor.

A common choice for the normalisation of the eigenvectors is
normalisation with respect to the mass matrix,

YiMp; =1
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Initial Conditions CITEE
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Introductory

The most general expression (general integral) for the Remarks
displacement of an homogeneous system is The

Homogeneous
Problem

N The

Homogeneous
x(t) = § Pi(Ajisinwit + Bj cos wit) Equation of
i=1 Eigenvah:e: and
= igenvectors

Eigenvectors are
Orthogonal

In the general integral there are 2N unknown constants of Modal Analysis
integration, that must be determined in terms of the initial Examples
conditions, usually expressed in terms of initial displacements

and initial velocities,

x(0) = xo X0=Y 10 WyB :
) . = . 3 fori=1,..., N,
{ ( {Xi,o = ZJN:1 Wi P A; o

where 1y; is the i-nth component of ;.



OOOPS!

i forgot to link the pdf with the last week lesson... i will put
the link in place tonight, but if you don't trust me, after the
class come here with your USB key, you'll be welcome!
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Orthogonality - 1 Geneaties
Giacomo Boffi

Introductory

Take into consideration two distinct eigenvalues, w? and w2,  Remarks
and write the characteristic equation for each eigenvalue: i

Homogeneous
Problem
The

K 1].’]' == w% M. ll)r Homogeneous

Equation of
Motion

Kis = 02M g Eigemvalucs and

Eigenvectors

Eigenvectors are
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Modal Analysis
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other eigenvector

PIKP, = wipI M1,
Yl K = wih Mg



Orthogonality - 2

The term P! K1, is a scalar, hence

-
YKy = (W Kpr) =K s
but K is symmetrical, KT = K and we have

YK, =P K.

By a similar derivation

YIMYP, =PI M.
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Orthogonality - 3

Substituting our last identities in the previous equations, we
have

Y Kps = wih; M,
P K = wip, M

subtracting member by member we find that

(W} — wi) Yy Mps =0
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Orthogonality - 3

Substituting our last identities in the previous equations, we
have

YK = 0l M

Y Kbs = wihy Mg
subtracting member by member we find that

(wF = w3) Y Mps =0

We started with the hypothesis that w? # w?, so for every
T £ s we have that the corresponding eigenvectors are
orthogonal with respect to the mass matrix

P Mg =0, for r # s.
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The eigenvectors are orthogonal also with respect to the
stiffness matrix:

PYIKYP, = w?PpIMyp, =0, forr#s.
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Orthogonality - 4

The eigenvectors are orthogonal also with respect to the
stiffness matrix:

PIKY, = 2PIMyp, =0, forr#s.

By definition
Mi = h{ M

and
P Kpi = WM.
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Eigenvectors are a base

The eigenvector are linearly independent, so for every vector x we can
write

N T
. P Mx
x=) jq;, with q; = JMi]
j=1

because of orthogonality and, generalising,

N N
x(t) =) wjq;(t), X(t) =) ;d;(t),
j=1 j=1

N

xi(t) = ZWiij(t),
j=1

x(t) =¥q(t), X(t) =¥q(t).

where ((t) is the vector of modal coordinates and ¥, whose columns
are the eigenvectors, is the eigenvector matrix.
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EoM in Modal Coordinates...

Substitute in the equation of motion,
MY q+K¥q=np(t)
premultiply by WT
YTMYG+Y KYq=¥Tp(t)
with obvious definitions

M*q + K" q =p*(t)
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are N independent equations!

By the preceding obvious definitions we have that the generic

element of the starred matrices can be expressed in terms of
single eigenvectors,

M =P Mp; = 5yMy,
K5 =i Kipj = wisyM.

where 85 is the Kroneker symbol,

o 1 i=j
5”{0 1]
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are N independent equations!

By the preceding obvious definitions we have that the generic
element of the starred matrices can be expressed in terms of
single eigenvectors,
-
M =i M = My,
T 2

where 85 is the Kroneker symbol,

1
51)' = {0

Substituting in the equation of motion, with p* =PI p(t)
we have a set of uncoupled equations

i=)

17

Midi + w?Miqy = pr(t), i=1,....N
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Initial Conditions Revisited Generalized

SDOF's
R .. Giacomo Boffi
The initial conditions
Introductory
X(O) = Xo Remarks
x(0) =xq The
Homogeneous
. - . . bl
Consider, e.g., the initial displacements: we can write Problem
Modal Analysis
XO e 11’ qO E;iznvector' are a
. . T Eoni_n Modal
premultiplying both members by W' M, e
Ex. |
YT TMxo=¥"MV¥qo=M*qo amples

premultiplying by the inverse of M* and taking into account
that M* is diagonal,

_ TMx

do=(M*)""WTMxo = qio= %
i

analogously

P Mxg

qio = M
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The characteristic equation is

3k — 2w?m
= wim =[5

—2k
2k — w?m
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Characteristic Equation CITEE
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The characteristic equation is Introductory
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Developing the determinant

(2m?)w* — (Tmk)w? + (2k?)w?® =0

Solving the algebraic equation in w?
> k7—+v33 > kT7++33
wi=——""— wy; = ———
m 4 m 4

k k
w? = 0.31386— w3 =3.18614—
m m



Eigenvectors

The first of the characteristic equation, substituting w?, gives
k(3 —2x0.31386)11 — 2kpo; =0
while substituting w3 gives
k(3 —2 x 3.18614) W12 — 2koy = 0
solving with Pp1 =P = 1 gives
1= {+0.84307} = {0.59307} |
+1.00000 +1.00000

the unnormalized eigenvectors.
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We compute first M; and M,,

Introductory
T Remarks
M; = 11)1 M, .

Homogeneous

— {0.84307, 1}|>™ 0] [0:84307 i

0 m 1

Modal Analysis

— {1.68614m, m} {0'84307} —2.42153m Examples
1 2 DOF System

M, =1.70346m

the adimensional normalisation factors are

x; = V2.42153, xp; = V1.70346.

Applying the normalisation factors to the respective unnormalised
eigenvectors and collecting them in a matrix, we have the matrix of
normalized eigenvectors

_ |+0.54177 —0.45440

= +0.64262 +0.76618
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Introductor
Substituting its modal expansion for x into the equation of Remarks
. . . T .
motion and premultiplying by W' we have the uncoupled T eeneous
modal equation of motion Problem
Modal Analysis
mih + 0.31386k q1 == +0.64262 Po sin wt szaDn;F::lis
méo + 3.18614k qo = +0.76618 po sin wt

Note that all the terms are dimensionally correct. Dividing by
m both equations, we have

G1 + w3qp = +0.64262 p— sin wt

Go + w3 = +0.76618 % sin wt



Particular Integral

We set )
& =Cisinwt, &=—w?Cysinwt
and substitute in the first modal EoM:

*

Cy (w% — w2) sinwt = % sin wt

solving for C;
pr_ 1
Ci=———
T mw? — w2

with w? = K;/m = m=K;/w?:

* 2 1 *
=Pl T Al with AL = PL = 204752 and By =

T K w? —w? *1-p? T K

of course

1 *
Co, =A% with AZ = P2 — 02404 and g, = &
k Wy

st 1_5% 7K2
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Generalized

Integra |S SDOF's

. . Giacomo Boffi
The integrals, for our loading, are thus

sinwt e
qi(t) = Agsinw;it + By cosw1t+Ast 3
1- Bl The
. sin wt Homogeneous
qz2(t) = Ay sin wyt + By cos wat + Aif] 1 3 Problem
- 62 Modal Analysis
for a system initially at rest Examples
2 DOF System
1 ) .
qi(t) :Ag) 5 (sinwt — By sinw;t)
1-B1
2 1 : :
q2(t) = Ag e (sin wt — By sin wot)
— P2

we are interested in structural degrees of freedom, too... disregarding
transient

AV AP\ 1.10926  0.109271 .
x1(t) = <U)11 +12 _t > smwt:(l_Bi “1op )p—kosmwt

— B3 B3

AV AP\ 1.31575  0.184245 _
x2(t) = <1|)21 -i-11)2217t2 smwt:(liﬁ% + - B2 )p—kosmwt

— B P2
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