
Dynamics of Structures 2009-2010
summer home assignment

1 Dynamical Testing

A simply supported beam is loaded at mid-span with a harmonic load, with
different frequencies and the same nominal load amplitude.

Due to the position of the load and the frequencies of excitation used
(close to the natural frequency, as determined by preliminary tests), it is
reasonable to assume that only the first mode of vibration of the beam is
excited.

The steady-state response parameters (amplitude and phase difference)
are measured for each loading frequency, and are here reported in table 1.
Determine the characteristics of the first mode of vibration of the beam.

f [Hz] p0 [N] ∆max [mm] θ [deg]

3.40 1200 5.811 6.879
3.80 1200 9.143 11.863
4.20 1200 21.296 32.012
4.60 1200 23.079 141.294
5.00 1200 8.450 165.476
5.40 1200 4.972 171.082

Table 1: load and response characteristics

Be warned that all the data reported in table 1 is affected by experimen-
tal errors, so that particular care should be used to get the best possible
estimate of ω and ζ.
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1.1 Solution

Denoting with the index i the parameters and measurements concerning
test number i, i = 1, . . . , 6, it is possible to write, for each test,

k−ω2im = fracp0,i cos θi∆i, i = 1, . . . , 6.

Having written 6 equations to determine k and m, there is no solution
that satisfies all the equations. In these case, usually we choose the best so-
lution as the solution that minimises the sum of the squares of the residuals,

r = Ax− b

|r2| = rTr = (xTATb)(Ax− b) = xTATAx− 2xTATb+ bTb

d|r2|
dx

= 0⇔ ATAx = ATb

A similar procedure can be used for estimating the damping coefficient
and the damping ratio, as we can write

c =
p0,i sin θi

ωi∆i
, i = 1, . . . , 6.

(note that in this case the output of the least squares procedure is equivalent
to the mean value of the 6 estimates).

The table below shows the original data, as input yo the procedure that
generated the data in Table 1, and the best estimates found with the least
squares procedure

Original Estimates

Stiffness 492000 493178
Mass 637.91 637.58
Natural freq. 4.4200 4.4264
Damping ratio 3.2000 3.1867

2 Vibration Isolation

A rotating machine weights 75kN and during operation transmits to its rigid
foundation a harmonic load of 2.4kN, at a frequency f=60Hz.

It is intended to reduce the transmitted force to 500N, suspending the
machine over a system of elastic supports.
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1. What should be the total stiffness of the elastic supports to achieve
the required transitted force reduction?

2. What if the dynamic displacements that the machine will experience
when mounted on the elastic support are too large for a correct op-
eration? Is it possible to modify the support system so that the dis-
placements are reduced and the harmonic force transmitted still is no
greater than 500N?

2.1 Solution

The system mass is 75 kN/g = 7645.26 kg, the excitation circular frequency
is 2π 60Hz = 376.99 rad s−1.

For an undamped system the steady state displacement is

dss =
p0

k−ω2m

and the steady state transmitted force is

fss = p0
1

1− β2
, where β =

ω

ω0
,

in particular we know that there is a force reduction only for β > 1, so that
to have a positive value on both sides of our equation we want to write

dss =
p0

ω2m− k
and fss = p0

1

β2 − 1
= p0

k

ω2m− k
.

The maximum value of k for which

fss = p0
k

ω2m− k
< fmax

is

kmax =
mω2fmax

p0 + fmax
,

so that substituting our values give

kmax =
7645.26 kg · 142 122.3 rad2 s−2 · 500N

2900N
= 187 338.3 kNm−1

If it is required a lesser steady state dynamic displacement, given by

dss =
p0

k−ω2m
,

it should be apparent that it is needed a larger denominator, and this is
possible if a) we increase the system mass (e.g., adding some ballast) or b)
we decrease the system stiffness.
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3 Generalised Coordinates (flexible systems)

Estimate the natural frequency of vibration of a tower-like structure, char-
acterised by an hollow, annular cross section with constant thickness t =

0.32m, mean radius R = R(x) = exp(−0.28768 xH)3.2m, height H = 72m,
Young modulus E = 30GPa, density ρ = 2500 kgm−3

H R

3.1 Solution

A suitable shape function, that will be used in the following, is ψ(x) =

1− cos
(
πx
2H

)
.

The computations are presented in form of a tableau, the last two
columns are the integrands in the estimates ofm? and k?, respectively, below
these columns the summations according to the trapezoidal and Simpson’s
rules.

x R(x) A(x) J(x) ψ(x) ψ"(x) ρAψ2 EJψ"2

0 3.2000 6.4340 33.024 0.0000 4.7596e− 4 0.0000e+ 0 2.2444e+ 5

9 3.0870 6.2067 29.653 0.0192 4.6682e− 4 5.7289e+ 0 1.9386e+ 5

18 2.9779 5.9875 26.626 0.0761 4.3973e− 4 8.6734e+ 1 1.5445e+ 5

27 2.8728 5.7760 23.908 0.1685 3.9575e− 4 4.1013e+ 2 1.1233e+ 5

36 2.7713 5.5720 21.468 0.2928 3.3656e− 4 1.1950e+ 3 7.2951e+ 4

45 2.6734 5.3752 19.277 0.4444 2.6443e− 4 2.6542e+ 3 4.0438e+ 4

54 2.5790 5.1853 17.310 0.6173 1.8214e− 4 4.9401e+ 3 1.7229e+ 4

63 2.4780 4.9822 15.360 0.8263 8.2650e− 5 8.5054e+ 3 3.1478e+ 3

72 2.4000 4.8255 13.959 1.0000 0.0000e+ 0 1.2064e+ 4 0.0000e+ 0

trap 2.1446e+ 5 6.3597e+ 6

simp 2.1243e+ 5 6.3384e+ 6

The required natural frequency is, using trapezoidal rule, f = 0.8667Hz

or, using Simpson’s rule, f = 0.8694Hz.
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4 Numerical Integration

A single degree of freedom system, with a mass m = 120 kg, a stiffness
k = 125 kNm−1 and a damping ratio ζ = 0.12 is at rest when it is subjected
to an external force p(t):

p(t) =

{
(4000(at)3 − 1280(at)2 + 96at)kN for 0.0 6 t 6 0.20s,

0.0 otherwise,

where a = 1 s−1.

1. Find the exact response in the time interval 0 6 t 6 0.5 s, using
superposition of the general integral and an appropriate particular
solution.

2. Integrate the equation of motion numerically using the algorithm of
constant acceleration, with two different integration steps h1 = 0.02s

and h2 = 0.005s, in the same time interval.

3. As above, this time using the linear acceleration algorithm.

4. Plot your results in a meaningful manner and comment your results.

4.1 Solution

The forcing function is

f(t) = f0(at)
3 + f1(at)

2 + f2(at)
1 + f3(at)

0,

we can write the particular integral in the form

ξ(t) = x0(at)
3 + x1(at)

2 + x2(at)
1 + x3(at)

0,

that, after substitution in the equation of motion, gives the equation

(kx0)(at)
3+(kx1+3cx0)(at)

2+(kx2+2cx1+6mx0)at+(kx3+cx2+2mx1) = f(t) = · · · .

The above equation must hold for every t, 0 6 t 6 0.2 s, so imposing
that the coefficients of different powers of t are equal on both sides of the
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equation we have a system of linear equations that can be conveniently
written as follows: 

x0 = f0/k

x1 = (f1 − 3c ∗ x0)/k
x2 = (f2 − 2c ∗ x1 − 6mx0)/k
x3 = (f3 − cx2 − 2mx1)/k

.

The natural frequency of our system is ω =
√
k/m = 32.275 rad s−1

and the damping coefficient is hence c = 2ζωm = 929.516N sm−1, that
substituted in the above equations gives

ξ(t) = 32.0(at)3 − 10.9539(at)2 + 0.746589(at) + 0.0154797.

With ωD = ω
√
1− ζ2 = 32.042 rad s−1, the displacement and the velocity

can be written as

x(t) = exp(−ζωt) (A cosωDt+ B sinωDt) + ξ(t)

_x(t) = exp(−ζωt) [ωD (B cosωD −A sinωDt) − ζω (A cosωDt+ B sinωDt)] + _ξ(t)

Imposing initial rest conditions, it is

A = −ξ(0) = 0.015 479 7m

B =
ζωA− _ξ(0)

ωD
= −0.025 171 66m.

The displacement and velocity at the end of the forced response are

x(0.2) = −0.025 883 96m

_x(0.20) = −0.102 221 6m s−1

so that, using a shifted time coordinate τ = t−0.20 and imposing the above
initial conditions the response in the free phase is

x(τ) = exp(−ζωτ) (A cosωDτ+ B sinωDτ)

with

A = −0.025 883 96m

B = −0.006 318 959m
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These results are summarised in the plot below
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5 3 DOF System

2L2L2L

L
L

m1 m2

An uniform, simply supported beam sustains two equal point masses, the
beam mass being negligible with respect to the sustained mass. Consider
negligible also the axial and shear deformations of the beam.

1. Write the structural matrices, find the eigenvalues solving the deter-
minantal equation, find the eigenvectors of the system.
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2. Examine the behaviour of the system when its supports are subjected
to a horizontal earthquake excitation, �ug = �ug(t).

5.1 Solution

First of all, the first and second degrees of freedom correspond to the ver-
tical displacements of the masses, while the third degree of freedom is the
common horizontal displacement of both masses.

We’ll examine a short python program that can be used to compute the
answers required.

The program begins with two import statements, the first imports all the
names from the base part of the scipy module, the second imports the name
eigh (that is a solver for generalised eigenproblems concerning hermitian
matrices) from the linalg submodule.

from scipy import *
from scipy.linalg import eigh

then we define an utility function that given a, b, two polynomials (more on
this later), and a length l, computes the definite integral

∫l
0 a(x)× b(x)dx

def integ(a, b, l):
integral = polyint(a*b)
return integral(l) -integral (0)

The flexibility matrix can be computed by integration, we observe that
the bending moment, for each load condition, can be described by linear
polynomials over 5 rectilinear pieces of the structure, top left, middle left,
middle centre, middle right and bottom right.

Scipy has a function that defines polynomials of a single variable, poly1d,
we abbreviate its name and then define a table as a list of three lists (one for
each load condition), whose elements are five polynomials that describe the
bending moments on each of the five segments of the structure. We define
also a list l that contains the normalised lengths of each segment.

p = poly1d
m = [[p([1, 0]), p([ 1, -1]), p([0, 1]), p([0, 1]), p([1, 0])],

[p([2, 0]), p([ 1, -2]), p([1, 0]), p([0, 2]), p([2, 0])],
[p([0.5 ,0]) , p([ -0.5]) , p([-0.5]), p([-0.5]), p([ -0.5 ,0])]]

l = [1,2,2,2,1]

We proceed by creating a 3 × 3, void flexibility matrix, flex, and then
we put into each position, i,j the sum of the five integrals, computed using
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integ and the moment for load case number i end the moment for load case
j.

flex = matrix(zeros ((3 ,3)))
for i in (0, 1, 2):

for j in (0, 1, 2):
flex[i,j] = sum(

[integ(a, b, lg) for a, b, lg in zip(m[i], m[j], l)])

The result is

F =
L3

3EJ

16 24 −6

24 48 −6

−6 −6 5


As a check, let’s compute the f3,3 term of the flexibility matrix. With

reference to the following figure, where the bending moment due to appli-
cation of a unit force directed as x3 is depicted,

L
L

6L

1/2

1

1/2

L/2

L/2

L/2

L/2

the work done by the unit force is

1f3,3 = 2

∫L
0

1

2
x
x

2EJ
dx+

∫6L
0

1L

2

L

2EJ
dx

simplifying,

f3,3 = 2

[
x3

12EJ

]L
0

+

[
L2x

4EJ

]6L
0

=

(
2

12
+
6

4

)
L3

EJ
=
2+ 18

12

L3

EJ
=
5L3

3EJ
.

Having the flexibility matrix the stiffness matrix is its inverse, while the
mass matrix is a diagonal matrix with m3 = 2m because the motion in x3
direction involves both the supported masses.

K = flex.I
M = matrix("1. 0. 0. ; 0. 1. 0.; 0. 0. 2.")
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The stiffness matrix is

K =
EJ

32L3

+51 −21 +36

−21 +11 −12

+36 −12 +48


The last part of the program computes the eigenvalues and the eigen-

vectors, the starred matrices and the modal load vector, the last one is
computed taking into account that

p(t) =M


0

0

1

 �ug(t)

evals , evecs = eigh(K,M)
evecs = matrix(evecs)
M_star = evecs.T*M*evecs , ","
K_star = evecs.T*K*evecs , "."
L = evecs.T*M*matrix("0;0;1")

In the following, the results (starred matrices omitted, as the eigenvec-
tors are orthonormal)

ω2i =
EJ

mL3

{
0.0474 0.3198 2.3203

}
Ψ =

−0.4719 0.3319 −0.8168

−0.8559 −0.3945 0.3343

0.1494 −0.6059 −0.3325



p?(t) =

 0.2988−1.2118

−0.6650

 �ug(t)

6 Rayleigh-Ritz & Subspace Iteration

... ... ...
x11 x12x1 x2
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The structure above can be analysed as a shear type building. The mass
matrix is diagonal, with storey masses being all equal to m. The storey
stiffnesses are linearly decreasing, k1 = 23k, k2 = 22k, ..., k11 = 13k and
k12 = 12k. For example, the stiffness matrix element k9,9 is given by
k9,9 = k9 + k10 = 29k.

1. Find the lower four eigenvalues and eigenvectors of the structure1 using
the Rayleigh-Ritz procedure, denoting the Ritz base with Φ̂0 and the
Ritz coordinates eigenvector matrix with Z.

2. Do one subspace iteration, deriving a new set of Ritz base vectors,

Φ̂1 = K
−1MΦZ0.

3. Find the lower four eigenvalues and eigenvectors of the structure using
the Rayleigh-Ritz procedure with the Ritz base Φ̂1.

4. Discuss the two set of results.

6.1 Solution

The mass matrix is
M = mI

where I is a 12 by 12 unit matrix.
The stiffness matrix is given by

K = k



45 −22 0 0 0 0 0 0 0 0 0 0

−22 43 −21 0 0 0 0 0 0 0 0 0

0 −21 41 −20 0 0 0 0 0 0 0 0

0 0 −20 39 −19 0 0 0 0 0 0 0

0 0 0 −19 37 −18 0 0 0 0 0 0

0 0 0 0 −18 35 −17 0 0 0 0 0

0 0 0 0 0 −17 33 −16 0 0 0 0

0 0 0 0 0 0 −16 31 −15 0 0 0

0 0 0 0 0 0 0 −15 29 −14 0 0

0 0 0 0 0 0 0 0 −14 27 −13 0

0 0 0 0 0 0 0 0 0 −13 25 −12

0 0 0 0 0 0 0 0 0 0 −12 12


1The eigenvectors ψi of the structure are different from the eigenvectors in Ritz coor-

dinates.
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The first four eigenpairs have been numerically computed, within very
good approximation, by a LINPACK subroutine, here the exact eigenvalues

0.3052 2.3834 6.3998 12.0934

and the corresponding exact eigenvalues, collected in the matrix Ψ,

Ψ =



0.0413 −0.1171 0.1870 −0.2465

0.0840 −0.2267 0.3281 −0.3687

0.1275 −0.3159 0.3760 −0.2844

0.1712 −0.3719 0.3059 −0.0239

0.2144 −0.3842 0.1291 0.2655

0.2564 −0.3463 −0.1034 0.3926

0.2963 −0.2576 −0.3107 0.2479

0.3330 −0.1250 −0.4066 −0.0932

0.3654 0.0363 −0.3355 −0.3819

0.3921 0.2029 −0.1059 −0.3613

0.4117 0.3452 0.1935 −0.0030

0.4225 0.4308 0.4146 0.3882



.

In the first Ritz iteration, I choose the following base vectors,

Φ0 =



0.1000 0.1000 0.1000 0.1000

0.2000 0.2000 0.3000 0.3000

0.3000 0.3000 0.4000 0.1000

0.4000 0.4000 0.3000 −0.1000

0.5000 0.4000 0.1000 −0.3000

0.6000 0.3000 −0.1000 −0.3000

0.7000 0.2000 −0.3000 −0.1000

0.8000 0.1000 −0.3000 0.1000

0.9000 0.0000 −0.1000 0.3000

1.0000 −0.1000 0.1000 0.1000

1.1000 −0.2000 0.2000 −0.1000

1.2000 −0.3000 0.4000 −0.4000



.

while in two subsequent iterations, using the subspace method, the base

12



vectors were given by

Φ1 =



0.1358 −0.0478 0.0248 0.0195

0.2758 −0.0930 0.0468 0.0323

0.4182 −0.1307 0.0570 0.0222

0.5613 −0.1557 0.0468 −0.0016

0.7029 −0.1604 0.0179 −0.0253

0.8403 −0.1421 −0.0206 −0.0315

0.9708 −0.1041 −0.0556 −0.0153

1.0909 −0.0495 −0.0687 0.0123

1.1967 0.0163 −0.0531 0.0347

1.2840 0.0851 −0.0169 0.0276

1.3485 0.1458 0.0234 0.0021

1.3842 0.1852 0.0567 −0.0257



, Φ2 =



0.1355 0.0489 0.0284 0.0212

0.2752 0.0949 0.0506 0.0320

0.4176 0.1324 0.0591 0.0236

0.5608 0.1561 0.0488 0.0002

0.7025 0.1613 0.0210 −0.0241

0.8401 0.1453 −0.0162 −0.0327

0.9707 0.1079 −0.0495 −0.0185

1.0910 0.0524 −0.0641 0.0097

1.1971 −0.0151 −0.0516 0.0318

1.2847 −0.0849 −0.0154 0.0274

1.3489 −0.1448 0.0299 −0.0007

1.3841 −0.1811 0.0637 −0.0302



.

In the next display, the eigenvalues convergence, in the left column the
exact results, in the rightmost the best estimates

exact 0 1 2

0.3052 0.3082 0.3052 0.3052

2.3834 2.5844 2.3855 2.3834

6.3998 7.2876 6.4485 6.4038

12.0934 13.9498 12.2310 12.1252

In the next display the first eigenvector convergence is shown, as you
can see excellent approximation is rapidly achieved for this mode.

exact 0 1 2

0.0413 0.0450 0.0414 0.0414

0.0840 0.0885 0.0841 0.0840

0.1275 0.1274 0.1275 0.1275

0.1712 0.1733 0.1711 0.1712

0.2144 0.2156 0.2144 0.2144

0.2564 0.2549 0.2564 0.2564

0.2963 0.2982 0.2963 0.2963

0.3330 0.3344 0.3331 0.3330

0.3654 0.3637 0.3654 0.3654

0.3921 0.3848 0.3920 0.3921

0.4117 0.4095 0.4117 0.4117

0.4225 0.4286 0.4225 0.4225
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