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Dynamics of Structures

Our aim is to develop some analytical and numerical methods
for the analysis of the stresses and deflections that the
application of a time varying set of loads induces in a generic
structure that moves in a neighborhood of a point of
equilibrium.
We will see that these methods are extensions of the
methods of standard static analysis, or to say it better, that
static analysis is a special case of dynamic analysis.
If we restrict ourselves to analysis of linear systems, however,
it is so convenient to use the principle of superposition to
study the combined effects of static and dynamic loadings
that different methods, of different character, are applied to
these different loadings.
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Definitions

Asdef
Dynamic something that varies over time

Dynamic Loading a Loading that varies over time
Dynamic Response the Response of a structural system to a

dynamic loading, expressed in terms of
stresses and/or deflections
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Types of Dynamic Analysis

Taking into account linear systems only, we must consider
two different definitions of the loading to define two types of
dynamic analysis
Deterministic Analysis the time variation of the loading is

fully known, and we can determine the
complete time variation of all the response
quantities that are required in our analysis

Non-deterministic Analysis when the time variation of the
loading is essentially random and is known only
in terms of some statistics, also the structural
response can be known only in terms of some
statistics of the response quantities.

Our focus will be on deterministic analysis
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Types of Dynamic Loadings

Dealing with deterministic loadings, we will study, in order of
complexity,
Harmonic Load the load is modulated by a harmonic

function, characterized by a frequency and a
phase, p(t) = p0 sin(ωt −ϕ)

Periodic Load the load repeat itself with a fixed period T ,
p(t) = p(t + T )

Non Periodic Load here we see two sub-cases,
I the load is described in terms of analytic

functions, p(t) = po f (t),
I the load is experimentally measured, and is

known only in a discrete set of instants; in
this case, we say that we have a
time-history.
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Characteristics of a Dynamical Problem

As both load and response vary over time, our methods of
analysis have to provide the dynamical problem solution for
every instant in the response.
More fundamentally, a dynamical problem is characterized by
the relevance of inertial forces, arising from the motion of
structural or serviced masses.
A dynamic analysis is required only when the inertial forces
represent a significant portion of the total load, otherwise a
static analysis will suffice, even if the loads are (slowly)
varying over time.
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Formulation of a Dynamical Problem

The inertial forces depend on deflections, the deflections
depend also on inertial forces, we have a loop and our line of
attack is of course to have a statement of the problem in
terms of differential equations.
If the mass is distributed along the structure, also the inertial
forces are distributed and the formulation of our problem
must be in terms of partial differential equations, to take into
account the spatial variations of both loading and response.
If we can assume that the mass is concentrated in a discrete
set of lumped masses, the analytical problem is greatly
simplified, because the inertial forces are applied only at the
lumped masses, and the deflections can be computed at
these points only, consenting the formulation of the problem
in terms of a set of ordinary differential equations, one for
each component of the inertial forces.
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Dynamic Degrees of Freedom

The dynamic degrees of freedom (DDOF) in a discretized
system are the displacements components associated with
the significant inertial forces, in correspondance with the
lumped masses.
If the lumped mass can be considered dimensionless, then 3
DDOFs will suffice to represent the associated inertial force.
If the lumped mass must be considered with finite
dimensions, then we have also inertial couples, and we need 6
DDOFs to represent the inertial force.
Of course, a continuous system has an infinite number of
degrees of freedom.
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Generalized Displacements

The lumped mass procedure that we have outlined is
effective if a large proportion of the total mass is
concentrated in a few points.
A primary example is a multistorey building, where one can
consider a lumped mass in correspondence of each storey.
When the mass is distributed, we can simplify our problem
using generalized coordinates. The deflections are expressed
in terms of a linear combination of assigned functions of
position, with the coefficients of the linear combination being
the generalized coordinates. E.g., the deflectlions of a
rectilinear beam can be expressed with a trigonometric series.
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Generalized Displacements, cont.

To fully describe a displacement field, we need to combine an
infinity of linearly indipendent base functions, but in practice
a good approximation can be achieved using only a small
number of functions and degrees of freedom.
Even if the method of generalized coordinates has its beauty,
we must recognise that for each different problem we should
derive an ad hoc formulation, without generality.
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Finite Element Method

The finite elements method (FEM) combines aspects of
lumped mass and generalized coordinates methods, providing
a simple and reliable method of analysis, that can be easily
programmed on a digital computer.
In the FEM, the structure is subdivided in a number of non
overlapping pieces, called the finite elements, delimited by
nodes.
The FEM uses piecewise approximations to the field of
displacements: in each element the displacement field is
derived from the displacements of the nodes that surround
each particular element, using interpolating functions, so that
the displacement, deformation and stress field in each
element can be expressed in terms of the unkown nodal
displacements.
Hence, the nodal displacements are the dynamical DOFs.
The desired level of approximation can be achieved by further
subdiving the structure. Another nice feature is that the
resulting equations are only loosely coupled, leading to an
easier computer solution.
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Writing the eq. of motion

In a deterministic dynamic analysis, given a prescribed load,
we want to evaluate the displacements in each instant of
time.
In most cases, a limited number of DDOFs gives a sufficient
accuracy, and in general the d. problem can be reduced to
the determination of the time-histories of some selected
component of displacements,
The mathematical expression that define the dynamic
displacements are known as the Equations of Motion (EOM),
the solution of the EOM gives the requested displacements.
The formulation of the EOM is the most important, often
the most difficult part of our task of dynamic analysts.
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Writing the EOM, cont.

We have a choice of techniques to help us in writing the
EOM, namely:

I the D’Alembert Principle,
I the Principle of Virtual Displacements,
I the Variational Approach.
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D’Alembert principle

By Newton’s II law of motion, for any particle the rate of
change of momentum is equal to the external force,

~p(t) =
d
dt

(m
d~u
dt

),

where ~u(t) is the particle displacent.
In structural dynamics, we may regard the mass as a
constant, and thus write

~p(t) = m~̈u,

where each operation of differentiation with respect to time
is denoted with a dot.
If we write

~p(t) −m~̈u = 0

and interpret the term −m~̈u as an Inertial Force that
contrasts the acceleration of the particle, we have an
equation of equilibrium for the particle.
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D’Alembert principle, cont.

The concept that a mass developes an inertial force opposing
its acceleration is known as the D’Alembert principle, and
using this principle we can write the EOM as a simple
equation of equilibrium.
The term ~p(t) must comprise each different force acting on
the particle, including the reactions of kinematic or elastic
constraints, opposing displacement, viscous forces and
external, autonomous forces.
In many simple problems, D’Alembert principle is the most
direct and convenient method for the formulation of the
EOM.
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Principle of virtual displacements

In a reasonably complex dynamic system (with articulated
rigid bodies and external/internal constraints) the direct
formulation of the EOM, using D’Alembert principle, may
result difficult.
However, in many cases the various forces acting on the
system may be simply expressed in terms of the ddof, even if
the equilibrium relationship between these forces may be
difficult to express..
In these cases, application of the Principle of Virtual
Displacements is very convenient.
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Principle of Virtual Displacements, cont.

For example, considering an assemblage of rigid bodies, the
pvd states that necessary and sufficient condition for
equilibrium is that, for every virtual displacement (any
infinitesimal displacement compatible with the restraints) the
total work done by all the external forces is zero.
For an assemblage of rigid bodies, writing the EOM requires
1. to identify all the external forces, comprising the inertial

forces, and to express their values in terms of the ddof;
2. to compute the work done by these forces for different

virtual displacements, one for each ddof;
3. to equate to zero all these work expressions.

The pvd is particularly convenient because we have only
scalar equations, even if the forces and displacements are of
vectorial nature.
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Variational approach

Variational approaches do not consider directly the forces
acting on the dynamic system, but rather are concerned with
the variations of kinetic and potential energy, and lead, as
well as the pvd, to a set of scalar equations.
The method to be used in a particular problem is mainly a
matter of convenience and also of personal taste.
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Part II

Single Degree of Freedom System
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1 DOF System

Structural dynamics is all about a motion in the
neighbourhood of a point of equilibrium.
We’ll start by studying a generic single degree of freedom
system, with constant mass m, subjected to a non-linear
generic force F = F (y , ẏ), where y is the displacement and ẏ
the velocity of the particle. The equation of motion is

ÿ =
1
m
F (y , ẏ) = f (y , ẏ)

.
It is difficult to integrate the above equation in the general
case, but it’s easy when the motion occurs in a small
neighbourhood of the equilibrium position.
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1 DOF System, cont.

In a position of equilibrium, yeq., the velocity and the
acceleration are zero, and hence f (yeq., 0) = 0.
The force can be linearized in a neighbourhood of yeq., 0:

f (y , ẏ) = f (yeq., 0) +
∂f
∂y

(y − yeq.) +
∂f
∂ẏ

(ẏ − 0) + O(y , ẏ).

Assuming that O(y , ẏ) is small in a neighborhood of yeq., we
can write the equation of motion

ẍ + aẋ + bx = 0

where x = y − yeq., a = −∂f
∂ẏ and b = −∂f

∂y .
In an infinitesimal neighborhood of yeq., the equation of
motion can be studied in terms of a linear differential
equation of second order.
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1 DOF System, cont.

A linear constant coefficient differential equation has the
integral x = A exp(st), that substituted in the equation of
motion gives

s2 + as + b = 0

whose solutions are

s1,2 = −
a
2
∓

√
a2

4
− b.

The general integral is

x(t) = A1 exp(s1t) + A2 exp(s2t).

Given that for a free vibration problem A1, A2 are given by
the initial conditions, the nature of the solution depends on
the sign of the real part of s1, s2.
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1 DOF System, cont.

If we write si = ri + ıqi , then we have

exp(si t) = exp(ıqi t) exp(ri t).

If one of the ri > 0, the response grows infinitely over time,
even for an infinitesimal perturbation of the equilibrium, so
that in this case we have an unstable equilibrium.
If both ri < 0, the response decrease over time, so we have a
stable equilibrium.
Finally, if both ri = 0 the s’s are imaginary, the response is
harmonic with constant amplitude.
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1 DOF System, cont.

If a > 0 and b > 0, both roots are negative or complex
conjugate with negative real part, the system is asympotically
stable.
If a = 0 and b > 0, the roots are purely imaginary, the
equilibrium is indifferent, the oscillations are harmonic.
If a < 0 or b < 0 at least one of the roots has a positive real
part, and the system is unstable.
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The basic dynamic system

A linear system is characterized by its mass distribution„ its
elastic properties and its energy-loss mechanism.
In a single degree of freedom (sdof) system each property can
be conveniently represented in a single physical element

I The entire mass, m, is concentrated in a rigid block, its
position completely described by the coordinate x(t).

I The elastic resistance to displacement is provided by a
massless spring of stiffness k

I The energy-loss is represented by a massless damper, its
damping constant being c .

I Finally, the external loading is the time-varying force
p(t).

(a)

m

c

k

p(t)

x
x(t)

(b)

p(t)fD(t)

fS(t)

fI(t)
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Equation of motion of the basic dynamic system

(a)

m

c

k

p(t)

x
x(t)

(b)

p(t)fD(t)

fS(t)

fI(t)

The equation of motion can be written using the D’Alembert
Principle, expressing the equilibrium of all the forces acting
on the mass including the inertial force.
The forces, positive if acting in the direction of the motion,
are the external force, p(t), and the resisting forces due to
motion, i.e., the inertial force fI(t), the damping force fD(t)
and the elastic force, fS(t).
The equation of motion, merely expressing the equilibrium of
these forces, is

fI(t) + fD(t) + fS(t) = p(t)
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EOM of the basic dynamic system, cont.

The resisting forces in

fI(t) + fD(t) + fS(t) = p(t)

are functions of the displacement x(t) or of one of its
derivatives.
Note that the positive sense of these forces is opposite to the
direction of motion.
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EOM of the basic dynamic system, cont.

In accordance to D’Alembert principle, the inertial force is
the product of the mass and acceleration

fI(t) = m ẍ(t).

Assuming a viscous damping mechanism, the damping force
is the product of the damping constant c and the velocity,

fD(t) = c ẋ(t).

Finally, the elastic force is the product of the elastic stiffness
k and the displacement,

fS(t) = k x(t).

The differential equation of dynamic equilibrium

m ẍ(t) + c ẋ(t) + k x(t) = p(t).

Note that this differential equation is a linear differential
equation of the second order, with constant coefficients.
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Influence of static forces

(a)

m

c

k

p(t)

x(t)
x

∆st x̄(t)

(b)

p(t)

k∆st

fS(t)
fD(t)

W

fI(t)

Considering the presence of a constant force, let’s say W , the
equation of motion is

m ẍ(t) + c ẋ(t) + k x(t) = p(t) +W ,

but expressing the total displacement as the sum of a
constant, static displacement and a dynamic displacement,

x(t) = ∆st + x̄(t),

substituting in we have

m ẍ(t) + c ẋ(t) + k ∆st + k x̄(t) = p(t) +W .
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Influence of static forces, cont.

Recognizing that k ∆st = W (so that the two terms, on
opposite sides of the equal sign, cancel each other), that
ẋ = ˙̄x and that ẍ = ¨̄x the EOM is now

m ¨̄x(t) + c ˙̄x(t) + k x̄(t) = p(t)

The equation of motion expressed with reference to the static
equilibrium position is not affected by static forces.
For this reasons, all displacements in further discussions will
be referenced from the equibrium position and denoted, for
simplicity, with x(t).
Note that the total displacements, stresses. etc. are
influenced by the static forces, and must be computed using
the superposition of effects.
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Influence of support motion
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xg(t) x(t)
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m

c

Displacements, deformations and stresses in a structure are
induced also by a motion of its support.
Important examples of support motion are the motion of a
building foundation due to earthquake and the motion of the
base of a piece of equipment due to vibrations of the building
in which it is housed.
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Influence of support motion, cont.
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Considering a support motion xg(t),
defined with respect to a inertial frame
of reference, the total displacement is

xtot(t) = xg(t) + x(t)

and the total acceleration is

ẍtot(t) = ẍg(t) + ẍ(t).

While the elastic and damping forces are still proportional to
relative displacements and velocities, the inertial force is
proportional to the total acceleration,

fI(t) = −mẍtot(t) = mẍg(t) +mẍ(t).

Writing the EOM for a null external load, p(t) = 0, is hence

m ẍtot(t) + c ẋ(t) + k x(t) = 0, or,
m ẍ(t) + c ẋ(t) + k x(t) = −m ẍg(t) ≡ peff(t).

Support motion is sufficient to excite a dynamic system:
peff(t) = −m ẍg(t).


