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The Equation of Motion

The SDOF equation of motion for a harmonic loading is:

mẍ+ k x = p0 sinωt.

We seek a particular solution to this equation, in terms of a
harmonic function with the same circular frequency, ω,

ξ(t) = C sinωt, ξ̈(t) = −ω2C sinωt.

Substituting x with ξ and simplifying, we get

C (k−ω2m) = p0.
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The Particular Integral

Starting from our last equation, C (k−ω2m) = p0,:
I solving for C we get C = p0

k−ω2m
,

I collecting k in the right member divisor: C = p0
k

1
1−ω2m

k

I but k/m = ω2
n, so that, with β = ω/ωn, we get:

C = p0
k

1
1−β2 .

We can now write the particular solution, with the
dependencies on β singled out in the second term:

ξ(t) =
p0

k

1

1− β2
sinωt.

The general integral for p(t) = p0 sinωt is hence

x(t) = A sinωnt+ B cosωnt+
p0

k

1

1− β2
sinωt.
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Response Ratio and Dynamic Amplification Factor

Defining the static deformation, ∆st = p0/k, we may write
the particular solution in terms of ∆st and the Response
Ratio, R(t; β), whose amplitude depends only on the
frequency ratio β = ω

ωn
,

ξ(t) = ∆st R(t; β).

The dynamic amplification factor D(β) can be defined as
follows:

R(t; β) =
1

1− β2
sinωt = D(β) sinωt.

D(β) is stationary and almost equal to 1 when
ω << ωn (this is a quasi-static behaviour), it
grows out of bound when β⇒ 1 (resonance), it is
negative for β > 1 and goes to 0 whenω>>ωn
(high-frequency loading).
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Dynamic Amplification Factor, the plot
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Response from Rest Conditions

Starting from rest conditions means that x(0) = ẋ(0) = 0.
Let’s start with x(t), then evaluate x(0) and finally equate
this last expression to 0:

x(t) = A sinωnt+ B cosωnt+ ∆stD(β) sinωt,

x(0) = B = 0.

We do as above for the velocity:

ẋ(t) = ωn (A cosωnt− B sinωnt) + ∆stD(β)ω cosωt,

ẋ(0) = ωnA+ω∆stD(β) = 0⇒

⇒ A = −∆st
ω

ωn
D(β) = −∆st βD(β)

Substituting, A and B in x(t) above, collecting ∆st and
D(β) we have, for p(t) = p0 sinωt, the response from rest:

x(t) = ∆st D(β) (sinωt− β sinωnt) .
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Resonant Response from Rest Conditions

We have seen that the response to harmonic loading with
zero initial conditions is

x(t;β) = ∆st
(sinωt− β sinωnt)

1− β2
.

To determine resonant response, we compute the limit for
β→ 1 using the de l’Hôpital rule (first, we write βωn in place
of ω, finally we substitute ωn = ω as β = 1):

lim
β→1

x(t;β) = lim
β→1

∆st
∂(sinβωnt− β sinωnt)/∂β

∂(1− β2)/∂β

=
∆st

2
(sinωt−ωt cosωt) .

As you can see, there is a term in quadrature with the
loading, whose amplitude grows linearly and without bounds.
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Resonant Response, the plot
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α = ω t / 2π
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2

∆st
x(t) = sinωt−ωt cosωt = sin 2πα− 2πα cos 2πα.

note that the amplitude A of the normalized envelope, with respect to the

normalized abscissa α =ωt/2π, is A =
√

1+ (2πα)2
for large α−→ 2πα, as the

two components of the response are in quadrature.
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home work

1. Find the response from rest initial conditions for an
undamped system, with p(t) = p0 cosωt.

2. Derive the expression for the resonant response with
p(t) = p0 cosωt, ω = ωn.
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The Equation of Motion for a Damped Oscillator

The SDOF equation of motion for a harmonic loading is:

mẍ+ c ẋ+ k x = p0 sinωt.

A particular solution to this equation is a harmonic function
not in phase with the input: x(t) = G sin(ωt− θ); it is
however equivalent and convenient to write :

ξ(t) = G1 sinωt+G2 cosωt,

where we have simply a different formulation, no more in
terms of amplitude and phase but in terms of the amplitudes
of two harmonics in quadrature, as in any case the particular
integral depends on two free parameters.



SDOF linear
oscillator

Giacomo Boffi

Damped
Response
EOM Damped
Particular Integral
Stationary
Response
Phase Angle
Dynamic
Magnification
Exponential Load

Accelerometre,
etc

The Equation of Motion for a Damped Oscillator
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The Particular Integral

Substituting x(t) with ξ(t), dividing by m it is

ξ̈(t) + 2ζωnξ̇(t) +ω
2
nξ(t) =

p0

k

k

m
sinωt,

Substituting the most general expressions for the particular
integral and its time derivatives

ξ(t) = G1 sinωt+G2 cosωt,

ξ̇(t) = ω (G1 cosωt−G2 sinωt),

ξ̈(t) = −ω2 (G1 sinωt+G2 cosωt).

in the above equation it is

−ω2 (G1 sinωt+G2 cosωt) + 2ζωnω (G1 cosωt−G2 sinωt)+

+ω2
n(G1 sinωt+G2 cosωt) = ∆stω

2
n sinωt
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The particular integral, 2
Dividing our last equation by ω2

n and collecting sinωt and
cosωt we obtain
(
G1(1−β2) −G22βζ

)
sinωt+

+
(
G12βζ+G2(1−β2)

)
cosωt = ∆st sinωt.

Evaluating the eq. above for t = π
2ω and t = 0 we obtain a

linear system of two equations in G1 and G2:

G1(1−β2) −G22ζβ = ∆st.

G12ζβ+G2(1−β2) = 0.

The determinant of the linear system is

det = (1−β2)2 + (2ζβ)2

and its solution is

G1 = +∆st
(1−β2)

det
, G2 = −∆st

2ζβ

det
.
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The Particular Integral, 3
Substituting G1 and G2 in our expression of the particular
integral it is

ξ(t) =
∆st

det
(
(1−β2) sinωt− 2βζ cosωt

)
.

The general integral for p(t) = p0 sinωt is hence

x(t) = exp(−ζωnt) (AsinωDt+B cosωDt)+

+∆st
(1−β2) sinωt− 2βζ cosωt

det

For p(t) = psin sinωt+ pcos cosωt, ∆sin = psin/k,
∆cos = pcos/k it is

x(t) = exp(−ζωnt) (AsinωDt+B cosωDt)+

+∆sin
(1−β2) sinωt− 2βζ cosωt

det
+

+∆cos
(1−β2) cosωt+ 2βζ sinωt

det
.
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Stationary Response

Examination of the general integral

x(t) = exp(−ζωnt) (AsinωDt+B cosωDt)+

+∆st
(1−β2) sinωt− 2βζ cosωt

det

shows that we have a transient response, that depends on
the initial conditions and damps out for large values of the
argument of the real exponential, and a so called steady-state
response, corresponding to the particular integral,
xs-s(t) ≡ ξ(t), that remains constant in amplitude and phase
as long as the external loading is being applied.
From an engineering point of view, we have a specific
interest in the steady-state response, as it is the long term
component of the response.
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The Angle of Phase

To write the stationary response in terms of a dynamic
amplification factor, it is convenient to reintroduce the
amplitude and the phase difference θ and write:

ξ(t) = ∆st R(t; β, ζ), R = D(β, ζ) sin (ωt− θ) .

Let’s start analyzing the phase difference θ(β, ζ). Its
expression is:

θ(β, ζ) = arctan
2ζβ

1− β2
.
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θ(β,ζ) has a sharper variation around
β = 1 for decreasing values of ζ, but it
is apparent that, in the case of slightly
damped structures, the response is ap-
proximately in phase for low frequencies
of excitation, and in opposition for high
frequencies. It is worth mentioning that
for β = 1 we have that the response is
in perfect quadrature with the load: this
is very important to detect resonant re-
sponse in dynamic tests of structures.
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Dynamic Magnification Ratio

The dynamic magnification factor, D = D(β, ζ), is the
amplitude of the stationary response normalized with respect
to ∆st:

D(β, ζ) =

√
(1− β2)2 + (2βζ)2

(1− β2)2 + (2βζ)2
=

1√
(1− β2)2 + (2βζ)2
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I D(β,ζ) has larger peak values for
decreasing values of ζ,

I the approximate value of the peak,
very good for a slightly damped
structure, is 1/2ζ,

I for larger damping, peaks move
toward the origin, until for ζ = 1√

2
the peak is in the origin,

I for dampings ζ > 1√
2
we have no

peaks.
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Dynamic Magnification Ratio (2)

The location of the response peak is given by the equation

dD(β, ζ)

dβ
= 0, ⇒ β3 + 2β2 − β = 0

the 3 roots are
βi = 0,±

√
1− 2ζ2.

We are interested in a real, positive root, so we are restricted
to 0 < ζ 6 1√

2
. In this interval, substituting β =

√
1− 2ζ2

in the expression of the response ratio, we have

Dmax =
1

2ζ

1√
1− ζ2

.

For ζ = 1√
2
there is a maximum corresponding to β = 0.

Note that, for a relatively large damping ratio, ζ = 20%, the
error of 1/2ζ with respect to Dmax is in the order of 2%.
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Harmonic Exponential Load

Consider the EOM for a load modulated by an exponential of
imaginary argument:

ẍ+ 2ζωnẋ+ω
2
nx = ∆stω

2
n exp(i(ωt− φ)).

Note that the phase can be disregarded as we can represent
its effects with a constant factor, as it is
exp(i(ωt−φ)) = exp(iωt)/ exp(iφ).
The particular solution and its derivatives are

ξ = G exp(iωt), ξ̇ = iωG exp(iωt), ξ̈ = −ω2G exp(iωt),

where G is a complex constant.
Substituting, dividing by ω2

n, removing the dependency on
exp(iωt) and solving for G yields

G = ∆st

[
1

(1− β2) + i(2ζβ)

]
= ∆st

[
(1− β2) − i(2ζβ)

(1− β2)2 + (2ζβ)2

]
.

Note how simpler it is to represent the stationary response of
a damped oscillator using the complex exponential
representation.
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Response in the Complex Plane

cost*(1−b^2)

c
o
st
*
(2
z
b
)

G exp(i   t)ω

Re

G

ω
t

Re[G exp(i   t)]ω

Im[G exp(i   t)]ω

Im

The stationary response is

ξ(t) = ∆st
(1− β2) − i(2ζβ)

(1− β2)2 + (2ζβ)2
exp(iωt)

I we plot G in the complex
plane,

I we multiply G by exp(iωt),
that is equivalent to rotate G
by the angle ωt,

I projecting the resulting vector
on the axes, we have the real
and imaginary part of the
response,

I these two vectors are rotated
90 degrees with respect to the
response to the real harmonic
load, p0 sinωt that we have
studied,

I what if p(t) = p0 cosωt?



SDOF linear
oscillator

Giacomo Boffi

Damped
Response
EOM Damped
Particular Integral
Stationary
Response
Phase Angle
Dynamic
Magnification
Exponential Load

Accelerometre,
etc

Response in the Complex Plane

cost*(1−b^2)

c
o
st
*
(2
z
b
)

G exp(i   t)ω

Re

G

ω
t

Re[G exp(i   t)]ω

Im[G exp(i   t)]ω

Im

The stationary response is

ξ(t) = ∆st
(1− β2) − i(2ζβ)

(1− β2)2 + (2ζβ)2
exp(iωt)

I we plot G in the complex
plane,

I we multiply G by exp(iωt),
that is equivalent to rotate G
by the angle ωt,

I projecting the resulting vector
on the axes, we have the real
and imaginary part of the
response,

I these two vectors are rotated
90 degrees with respect to the
response to the real harmonic
load, p0 sinωt that we have
studied,

I what if p(t) = p0 cosωt?



SDOF linear
oscillator

Giacomo Boffi

Damped
Response
EOM Damped
Particular Integral
Stationary
Response
Phase Angle
Dynamic
Magnification
Exponential Load

Accelerometre,
etc

Response in the Complex Plane

cost*(1−b^2)

c
o
st
*
(2
z
b
)

G exp(i   t)ω

Re

G

ω
t

Re[G exp(i   t)]ω

Im[G exp(i   t)]ω

Im

The stationary response is

ξ(t) = ∆st
(1− β2) − i(2ζβ)

(1− β2)2 + (2ζβ)2
exp(iωt)

I we plot G in the complex
plane,

I we multiply G by exp(iωt),
that is equivalent to rotate G
by the angle ωt,

I projecting the resulting vector
on the axes, we have the real
and imaginary part of the
response,

I these two vectors are rotated
90 degrees with respect to the
response to the real harmonic
load, p0 sinωt that we have
studied,

I what if p(t) = p0 cosωt?



SDOF linear
oscillator

Giacomo Boffi

Damped
Response
EOM Damped
Particular Integral
Stationary
Response
Phase Angle
Dynamic
Magnification
Exponential Load

Accelerometre,
etc

Response in the Complex Plane

cost*(1−b^2)

c
o
st
*
(2
z
b
)

G exp(i   t)ω

Re

G

ω
t

Re[G exp(i   t)]ω

Im[G exp(i   t)]ω

Im

The stationary response is

ξ(t) = ∆st
(1− β2) − i(2ζβ)

(1− β2)2 + (2ζβ)2
exp(iωt)

I we plot G in the complex
plane,

I we multiply G by exp(iωt),
that is equivalent to rotate G
by the angle ωt,

I projecting the resulting vector
on the axes, we have the real
and imaginary part of the
response,

I these two vectors are rotated
90 degrees with respect to the
response to the real harmonic
load, p0 sinωt that we have
studied,

I what if p(t) = p0 cosωt?



SDOF linear
oscillator

Giacomo Boffi

Damped
Response
EOM Damped
Particular Integral
Stationary
Response
Phase Angle
Dynamic
Magnification
Exponential Load

Accelerometre,
etc

Response in the Complex Plane

cost*(1−b^2)

c
o
st
*
(2
z
b
)

G exp(i   t)ω

Re

G

ω
t

Re[G exp(i   t)]ω

Im[G exp(i   t)]ω

Im

The stationary response is

ξ(t) = ∆st
(1− β2) − i(2ζβ)

(1− β2)2 + (2ζβ)2
exp(iωt)

I we plot G in the complex
plane,

I we multiply G by exp(iωt),
that is equivalent to rotate G
by the angle ωt,

I projecting the resulting vector
on the axes, we have the real
and imaginary part of the
response,

I these two vectors are rotated
90 degrees with respect to the
response to the real harmonic
load, p0 sinωt that we have
studied,

I what if p(t) = p0 cosωt?



SDOF linear
oscillator

Giacomo Boffi

Damped
Response

Accelerometre,
etc
The
Accelerometre
Measuring
Displacements

Measuring Support Accelerations

We have seen that in seismic analysis the loading is
proportional to the ground acceleration.
A simple oscillator, when properly damped, may serve the
scope of measuring support accelerations.
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Measuring Support Accelerations, 2

With the equation of motion valid for a harmonic support
acceleration:

ẍ+ 2ζβωnẋ+ω
2
nx = −ag sinωt,

the stationary response is ξ =
mag
k D(β, ζ) sin(ωt− θ).

If the damping ratio of the oscillator is ζ u 0.7, then the
Dynamic Amplification D(β) u 1 for 0.0 < β < 0.6!

Oscillator’s displacements will be proportional to the
accelerations of the support for applied frequencies up to
about six-tenths of the natural frequency of the instrument.
As it is possible to record the oscillator displacements by
means of electro-mechanical or electronic devices, it is hence
possible to measure, within an almost constant scale factor,
the ground accelerations component up to a frequency of the
order of 60% of the natural frequency of the oscillator.
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ẍ+ 2ζβωnẋ+ω
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Measuring Displacements

Consider now a harmonic displacement of the support, ug(t) = ug sinωt.
The support acceleration (disregarding the sign) is ag(t) =ω2ug sinωt.

With the equation of motion: ẍ+ 2ζβωnẋ+ω2
nx = −ω2ug sinωt, the

stationary response is ξ = ugβ
2D(β,ζ) sin(ωt− θ).

Let’s see a graph of the dynamic amplification factor derived above.
We see that the displacement of the in-
strument is approximately equal to the
support displacement for all the excita-
tion frequencies greater than the natu-
ral frequency of the instrument, for a
damping ratio ζ u .5.

It is possible to measure the support displacement measuring the deflection of

the oscillator, within an almost constant scale factor, for excitation frequencies

larger than ωn.
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It is possible to measure the support displacement measuring the deflection of

the oscillator, within an almost constant scale factor, for excitation frequencies

larger than ωn.
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nx = −ω2ug sinωt, the

stationary response is ξ = ugβ
2D(β,ζ) sin(ωt− θ).

Let’s see a graph of the dynamic amplification factor derived above.

We see that the displacement of the in-
strument is approximately equal to the
support displacement for all the excita-
tion frequencies greater than the natu-
ral frequency of the instrument, for a
damping ratio ζ u .5.

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

β
2
 D(β,ζ=0.0)

β
2
 D(β,ζ=1/6)

β
2
 D(β,ζ=1/4)

β
2
 D(β,ζ=1/2)

β
2
 D(β,ζ=1.0)

It is possible to measure the support displacement measuring the deflection of

the oscillator, within an almost constant scale factor, for excitation frequencies

larger than ωn.



SDOF linear
oscillator

Giacomo Boffi

Vibration
Isolation

Part III

Vibration Isolation



SDOF linear
oscillator

Giacomo Boffi

Vibration
Isolation
Introduction
Force Isolation
Displacement
Isolation
Isolation
Effectiveness

Vibration Isolation

Vibration isolation is a subject too broad to be treated in
detail, we’ll present the basic principles involved in two
problems,
1. prevention of harmful vibrations in supporting structures

due to oscillatory forces produced by operating
equipment,

2. prevention of harmful vibrations in sensitive instruments
due to vibrations of their supporting structures.
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Force Isolation

Consider a rotating machine that produces an oscillatory
force p0 sinωt due to unbalance in its rotating part, that has
a total mass m and is mounted on a spring-damper support.
Its steady-state relative displacement is given by

xs-s =
p0

k
D sin(ωt− θ).

This result depend on the assumption that the supporting structure
deflections are negligible respect to the relative system motion.
The steady-state spring and damper forces are

fS = k xss = p0D sin(ωt− θ),

fD = c ẋss =
cp0Dω

k
cos(ωt− θ) = 2 ζβp0D cos(ωt− θ).
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Transmitted force

The spring and damper forces are in quadrature, so the
amplitude of the steady-state reaction force is given by

fmax = p0D
√

1+ (2ζβ)2

The ratio of the maximum
transmitted force to the am-
plitude of the applied force is
the transmissibility ratio (TR),

TR =
fmax

p0
= D

√
1+ (2ζβ)2.
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1. For β <
√
2, TR is always greater than 1: the transmitted force is

amplified. 2. For β >
√
2, TR is always smaller than 1 and for the same β

TR decreases with ζ.
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Displacement Isolation

Another problem concerns the harmonic support motion
ug(t) = ug0 exp iωt forcing a steady-state relative
displacement of some supported (spring+damper) equipment
of mass m (using exp notation) xss = ug0 β

2D exp iωt, and
the mass total displacement is given by

xtot = xs-s + ug(t) = ug0

(
β2

(1− β2) + 2 i ζβ
+ 1

)
exp iωt

= ug0 (1+ 2iζβ)
1

(1− β2) + 2 i ζβ
exp iωt

= ug0

√
1+ (2ζβ)2D exp i (ωt−ϕ).

If we define the transmissibility ratio TR as the ratio of the
maximum total response to the support displacement
amplitude, we find that, as in the previous case,

TR = D
√

1+ (2ζβ)2.
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Isolation Effectiveness

Define the isolation effectiveness,

IE = 1− TR,

IE=1 means complete isolation, i.e., β = ∞, while IE=0 is
no isolation, and takes place for β =

√
2.

As effective isolation requires low damping, we can
approximate TR u 1/(β2 − 1), in which case we have
IE = (β2 − 2)/(β2 − 1). Solving for β2, we have
β2 = (2− IE)/(1− IE), but

β2 = ω2/ω2
n = ω2 (m/k) = ω2 (W/gk) = ω2 (∆st/g)

where W is the weight of the mass and ∆st is the static
deflection under self weight. Finally, from ω = 2π f we have

f =
1

2π

√
g

∆st

2− IE
1− IE
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Isolation Effectiveness (2)

The strange looking

f =
1

2π

√
g

∆st

2− IE
1− IE

can be plotted f vs ∆st for dif-
ferent values of IE, obtaining a
design chart.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

In
p

u
t 

fr
e

q
u

e
n

c
y
 [

H
z
]

∆st [cm]

IE=0.00
IE=0.50
IE=0.60
IE=0.70
IE=0.80
IE=0.90
IE=0.95
IE=0.98
IE=0.99

Knowing the frequency of excitation and the required level of
vibration isolation efficiency (IE), one can determine the
minimum static deflection (proportional to the spring
flexibility) required to achieve the required IE. It is apparent
that any isolation system must be very flexible to be effective.
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Evaluation of damping

The mass and stiffness of phisycal systems of interest are
usually evaluated easily, but this is not feasible for damping,
as the energy is dissipated by different mechanisms, some one
not fully understood... it is even possible that dissipation
cannot be described in term of viscous-damping, But it
generally is possible to measure an equivalent
viscous-damping ratio by experimental methods:

I free-vibration decay method,
I resonant amplification method,
I half-power (bandwidth) method,
I resonance cyclic energy loss method.
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Free vibration decay

We already have discussed the free-vibration decay method,

ζ =
δm

2πm (ωn/ωD)

with δm = ln xn
xn+m

, logarithmic decrement. The method is
simple and its requirements are minimal, but some care must
be taken in the interpretation of free-vibration tests, because
the damping ratio decreases with decreasing amplitudes of
the response, meaning that for a very small amplitude of the
motion the effective values of the damping can be
underestimated.
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Resonant amplification

This method assumes that it is possible to measure the
stiffness of the structure, and that damping is small. The
experimenter (a) measures the steady-state response xss of a
SDOF system under a harmonic loading for a number of
different excitation frequencies (eventually using a smaller
frequency step when close to the resonance), (b) finds the
maximum value Dmax =

max{xss}
∆st

of the dynamic
magnification factor, (c) uses the approximate expression
(good for small ζ) Dmax =

1
2ζ to write

Dmax =
1
2ζ =

max{xss}
∆st

and finally (d) has

ζ = ∆st
2max{xss}

.

The most problematic aspect here is getting a good estimate
of ∆st, if the results of a static test aren’t available.
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Half Power

The adimensional frequencies where the response is 1/
√
2

times the peak value can be computed from the equation

1√
(1− β2)2 + (2βζ)2

=
1√
2

1

2ζ
√
1− ζ2

squaring both sides and solving for β2 gives

β2
1,2 = 1− 2ζ2 ∓ 2ζ

√
1− ζ2

For small ζ we can use the binomial approximation and write

β1,2 =
(
1− 2ζ2 ∓ 2ζ

√
1− ζ2

) 1
2 u 1− ζ2 ∓ ζ

√
1− ζ2
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Half power (2)

From the approximate expressions for the difference of the
half power frequency ratios,

β2 − β1 = 2ζ
√

1− ζ2 u 2ζ

and their sum

β2 + β1 = 2(1− ζ2) u 2

we can deduce that

β2 − β1

β2 + β1
=
f2 − f1
f2 + f1

u
2ζ
√
1− ζ2

2(1− ζ2)
u ζ, or ζ u

f2 − f1
f2 + f1

where f1, f2 are the frequencies at which the steady state
amplitudes equal 1/

√
2 times the peak value, frequencies

that can be determined from a dynamic test where detailed
test data is available.



SDOF linear
oscillator

Giacomo Boffi

Evaluation of
damping
Introduction
Free vibration
decay
Resonant
amplification
Half Power
Resonance Energy
Loss

Resonance Cyclic Energy Loss

If it is possible to determine the phase of the s-s response, it
is possible to measure ζ from the amplitude ρ of the
resonant response.
At resonance, the deflections and accelerations are in
quadrature with the excitation, so that the external force is
equilibrated only by the viscous force, as both elastic and
inertial forces are also in quadrature with the excitation.
The equation of dynamic equilibrium is hence:

p0 = c ẋ = 2ζωnm (ωnρ).

Solving for ζ we obtain:

ζ =
p0

2mω2
nρ

.
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