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Response to Periodic Loading
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Introduction

A periodic loading is characterized by the identity

p(t) =p(t+T)

where T is the period of the loading, and wy = Z is its
principal frequency.

SDOF linear
oscillator

G. Boffi




Introduction

Periodic loadings can be expressed as an infinite series of
harmonic functions using Fourier theorem, e.g., an
antisymmetric loading is

p(t) = p(—t) =3 Z p;sinjwit = 3 2 p;sinwt.

The steady-state response of a SDOF system for a harmonic
loading Ap;(t) = p; sin wjt is known; with 3; = w;/wp it is:
Xjss = 1D(Bj, ¢) sin(ewjt — O(B), 0)).

In general, it is possible to sum all steady-state responses,
the infinite series giving the SDOF response to p(t).

Due to the asymptotic behaviour of D([3; () (D goes to zero
for large, increasing [3) it is apparent that a good
approximation to the steady-state response can be obtained
using a limited number of low-frequency terms.
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Fourier Series

Using Fourier theorem any practical periodic loading can be

expressed as a series of harmonic loading terms.
Consider a loading of period T, its Fourier series is given by

(o.0] o0
. _ 27T
p(t) :ao+Za,-cosw,-t+Zb,-smw,-t, w;j = jwr =j,

j=1 j=1 P

where the harmonic amplitude coefficients have
expressions:

Tp > (T
= —J p(t) dt, a; = —J p(t) cosw;t dt,
Tp Jo

2 (T
b; = —J p(t) sinw;t dt,
Tp Jo

as, by orthogonality, jg" p(t)cosw;dt = fzp gjcos’ witdt = 2aj,
etc etc.
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If p(t) has not an analytical representation and must be measured

experimentally or computed numerically, we may assume that it is
possible

(a) to divide the period in N equal parts At = T, /N,
(b) measure or compute p(t) at a discrete set of instants
t1, tz) ooy tn, with tm = mAt,

obtaining a discrete set of values p,,, m =1,...,N (note that
p, = py by periodicity).

Using the trapezoidal rule of integration, with p, = p, we can
write, for example, the cosine-wave amplitude coefficients,

N N .
2 ) 2 jm 27t
=N E p,, Cos(jwimAt) = N E Pm COS —

m=1 m=1

It’s worth to note that the discrete function cos ’m% is periodic
with period N.
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The Fourier series can be written in terms of the

exponentials of imaginary argument,

p(t) = Z Pjexpiw;t

j=—00
where the complex amplitude coefficients are given by

1 (T
P; = T_J p(t) expiw;jt dt, j=—00,...,400.
pJo
For a sampled p,, we can write, using the trapezoidal
integration rule and substituting t,, = mAt = mT,/N,
w;j = j 271/ Tp:

N .
1 27Tjm
PIENme EXp(—l N ))

m=1
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We have seen that the steady-state response to the jth
sine-wave harmonic can be written as

b; 1 ,
Xj = E} [W] sin wjt, Bj = wj/wn,

analogously, for the jth cosine-wave harmonic,

qj 1
Xj = cos wijt.

k |1 P2

Finally, we write

1 o0
x(t) = o ao+;1

1
1—2] (aj cos wjt + by sin wjt)
j

SDOF linear

Damped Response osdilltor

G. Boffi

In the case of a damped oscillator, we must substitute the
steady state response for both the jth sine- and cosine-wave
harmonic,

1 — — 23 b;
x(t :_—i_EZ 1—p (ZCﬁ) cosw,-t+
1 ‘|’ZC[~)); a; B;z) bi

— sin wjt.

(ZCB )2

As usual, the exponential notation is neater,

> E explw,
Z k ( +i(20B5)°
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As an example, consider the loading

p(t) = max{p, sin 2T—7Et, 0}

1 (To/2 27t
dg = — posin—dt:&,
2 (Te/? 27t 27ijt 0 for j odd
aj = — PoSin— cos —— dt =< p T _
Tp Jo Tp To 2 [?] forj even,
2 (Te/2 it | 2mjt Po forj=
bj = — posin—sin—l dt =< 2 ]
Tpr Jo Tp Tp 0 forn>1.
Example cont. oslator
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Assuming 3; = 3/4, from
p="2(1+ Zsinwt — £C0s2wit — % cos 4wt — ... ) with the
dynamic amplifiction factors

etc, we have
x(t) = Po 1—|—87Tsinwt+ S cos 2wqt + L cos 4wt +
~ ok 7 "5 " 60 R

Take note, these solutions are particular solutions! If your solution
has to respect given initial conditions, you must consider also the
homogeneous solution.
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Nature of Impulsive Loadings

p®

An impulsive load is characterized
» by asingle principal impulse, and

» by arelatively short duration.

» Impulsive or shock loads are of great importance for
the design of certain classes of structural systems, e.g.,
vehicles or cranes.

» Damping has much less importance in controlling the
maximum response to impulsive loadings because the
maximum response is reached in a very short time,
before the damping forces can dissipate a significant
portion of the energy input into the system.

» For this reason, in the following we’ll consider only the
undamped response to impulsive loads.
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Definition of Maximum Response

In general, when dealing with impulse response
characterized by its duration ty we are interested either in

a the maximum of the absolute values of maxima (named
also the peak value ) of the response ratio R(t) in
0<t<tgor,

b if we have no maxima during the excitation phase (i.e.,
X#0in0 < t < tg) we want to know the amplitude of
the free vibrations that are excited by the impulse.
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Half-sine Wave Impulse
The sine-wave impulse has expression

o(t) = posin i = pysinwt  for0 <t < to,
0 otherwise.

S where w = 5T is the
frequency associated with the
0 load. Note that w ty = 7.

00 05t t
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Consider an undamped SDOF initially at rest, with natural
circular frequency w, and stiffness k. With reference to a
half-sine impulse with duration ty, the frequency ratio {3 is
w/wn = T,/2t0.
Its response ratio in the interval 0 < t < tg is
1 wt w
R(t) = (sinwt — B sin —) INB: — = wp]
1—p2 B B
while fort > ty the response ratio is
—p3 T, . . T
R(t) = ——F5 | (1+ cos =)sin wn(t —to) + sin —cos wy(t — to)
1—p s §
Maximum response to sine impulse oscllstor
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(a) Since we are interested in the maximum response ratio
during the excitation, we need to know when velocity is
zero in the timeinterval 0 < t < tg; from

we can see that the roots are
wt = Fwt/P + 2nt, n = 0, F1, F2, F3,...; itis convenient
to substitute wt = tx, where o« = t/ty; substituting and
solving for o« one has

2nf3

(X:ﬁ, Withn:O,:f:1,:F2,...,forO<(X<1.

The next slide regards the characteristics of these roots.
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24T, - Noroots of type o¢min forn > 0;
1 1/2
// P P ———— - noroots of type atmax forn < 0;
// OpanBim1) o O (B-1) ooeeoe - noroots for 3 > 1,i.e., noroots
/// amax(B'+2) - umm(B’+2) forty < h;
°e Opa(B2) G (B2) ] 0= 7
OpaB3) —— € (B,+3) - only one root of type atmax for
Opna(Bi-8) o A (B-3) - % < [3 < 1i.e.,
o 06 Omax(B.4) —— A (B,+4) 7 T, 3T,
3 UpBd) - Cl(Bid) o 7 <to< T
= U (Br+5) —— - three roots, two maxima and
S o4 - one minimum, for + < B < 1;
ty 5 3
Upmax(B.n): locations of response maxima, - five roots, three maxima and two
02 Oma(BM)=(2n BY(B+1 minima, for% < B < %;
n): locations of inima,
AN B o By - etcetc.
i/
0
0 19 15 113 1
B

In summary, to find the maximum of the response for an

assigned 3 < 1, one has (a) to compute all oy =

2kp

m until a

root is greater than 1, (b) compute all the responses for
t, = ato, (c) choose the maximum of the maxima.
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For 3 > 1, the maximum response takes place fort > ty, and
its absolute value (see slide Response to sine-wave impulse) is

Rmax = %JU + cos %)2 + sin? %,

using a simple trigonometric identity we can write

but
14+ cos2¢p = (cos? ¢ +sin? ) + (cos? ¢ —sin? §) = 2 cos? P,
so that

2 T
1— B2

B

Rmax -

Rectangular Impulse ostilator
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Cosider a rectangular impulse of duration ty,

0 otherwise. ob4

1 for0 <t < ty,
p(t)=po{ °

The response ratio and its time derivative are
R(t) =1— cos wht, R(t) = wp sin wpt,

and we recognize that we have maxima Rmax = 2 for
wnt = nm, with the condition t < ty. Hence we have no
maximum during the loading phase for to < T,/2, and at
least one maximum, of value 2A, if tg > T,/2.
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For shorter impulses, the maximum response ratio is not
attained during loading, so we have to compute the
amplitude of the free vibrations after the end of loading
(remember, as to < T,/2 the velocity is positive at t = tg!).

R(t) = (1—cos wntg) cos wn(t—tg)+(sin wntg) sin wn(t—tp).

The amplitude of the response ratio is then

A= \/(1 — €OS Wnpto)? + sin® wnty =

wnt
= /2(1— cos wptg) = 25sin ; 9.
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Let’s consider the response of a SDOF to a triangular
impulse,

Po g
p(t) =po (1—t/to) for0 <t <to J\

As usual, we must start finding the minimum duration that
gives place to a maximum of the response in the loading
phase, that is

1 . t t t
R(t) = sinwh— —coswp—+1——, 0<t<tp.
wnto to to to

Taking the first derivative and setting it to zero, one can see
that the first maximum occurs for t = ty for tg = 0.37101T,,
and substituting one can see that Rmax = 1.
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For load durations shorter than 0.37101T,,, the maximum
occurs after loading and it’s necessary to compute the
displacement and velocity at the end of the load phase.
For longer loads, the maxima are in the load phase, so that
one has to find the all the roots of R(t), compute all the
extreme values and finally sort out the absolute value

maximum.
Shock or response spectra oslator
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We have seen that the response ratio is determined by the ratio of the impulse
duration to the natural period of the oscillator. One can plot the maximum
displacement ratio Rmax as a function of t, /T, for various forms of impulsive loads.

2.5
2.0f
2
8 1.5-
g rectangular
o triangular
< .
® 1.00 1 half sine
a
0.5¢
0.0c——=5 - o o n
~wn [Te] [Te]
NS N <
o
to/Tn

Such plots are commonly known as displacement-response spectra, or simply as

response spectra.




Approximate Analysis

For long duration loadings, the maximum response ratio
depends on the rate of the increase of the load to its
maximum: for a step function we have a maximum response
ratio of 2, for a slowly varying load we tend to a quasi-static
response, hence a factor = 1

On the other hand, for short duration loads, the maximum
displacement is in the free vibration phase, and its amplitude
depends on the work done on the system by the load.

The response ratio depends further on the maximum value
of the load impulse, so we can say that the maximum
displacement is a more significant measure of response.
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Approximate Analysis (2)

An approximate procedure to evaluate the maximum
displacement for a short impulse loading is based on the
impulse-momentum relationship,

to
mAX :J [p(t) — kx(t)] dt.
0

When one notes that, for small tg, the displacement is of the
order of t3 while the velocity is in the order of to, it is
apparent that the kx term may be dropped from the above

expression, i.e.,
to
mAX &J p(t) dt.
0
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Approximate Analysis (3)

Using the previous approximation, the velocity at time tg is
1 [t
X(tg) = — t) dt
( O) m JO p( ) )

and considering again a negligibly small displacement at the
end of the loading, x(to) = 0, one has

X(t — to) Jto p(t) dt sinwn(t — to).

mwn Jo

Please note that the above equation is exact for an
infinitesimal impulse loading (and will be discovered again in
a few minutes).

SDOF linear
oscillator

G. Boffi

Response to General Dynamic Loading
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Undamped SDOF osclator.
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For an infinitesimal impulse, the impulse-momentum is
exactly p(t) dt and the response is
T)dTt
dx(t—1) = P(T) sinwn(t—1), t>T,
mwn,
and to evaluate the response at time t one has simply to sum
all the infinitesimal contributions for T < t,
1 t
x(t) = J p(T) sinwn(t—T)dT, t>0.
mwn 0
This relation is known as the Duhamel integral, and tacitly
depends on initial rest conditions for the system.
Damped SDOF osclator
P
G. Boffi

The derivation of the equation of motion for a generic load
is analogous to what we have seen for undamped SDOF, the
infinitesimal contribution to the response at time t of the
load at time T is

p(T)

map

dx(t) = dt sinwp(t — 1) exp(—Cwn(t—1)) t>=

and integrating all infinitesimal contributions one has

x(t) = m:uD JZ p(T) sin wp(t—7) exp(—Cwn(t—T))dT, t> 0.




Evaluation of Duhamel integral, undamped
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Using the trig identity
sin(wpt — W, T) = sin wpt COS WLT — COS Wit Sin W, T
the Duhamel integral is rewritten as
t t .
T) COS WLTdT T)sin wyTdT
x(t) = JoP(¥ k sin wpt — JoP(¥ k COSs wpt
maun Mn
= A(t) sin wnt — B(t) cos wnt
where
Alt) = 7t J"g p(T) cos waTdT
B(t) = mi fép(’t) sin wnTdT
Numerical evaluation of Duhamel integral, i
G. Boffi

undamped

Usual numerical procedures can be applied to the evaluation
of A and B, e.g., using the trapezoidal rule, one can have,
with Ay = A(NAT) and yy = p(NAT) cos(NAT)

AT
Anr = An + T (YN + Yna) -

n
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For a damped system, it can be shown that

x(t) = A(t) sin wpt — B(t) cos wpt

with
1 [t exp (wnT
A(t) = T)————— COS wpTdT
( ) meJOP( )exprnt D )
1t
B(t) = p(T)M sin wpTdrT.
mwp Jo exp Cwnt
Numerical evaluation of Duhamel integral, i
damped o

Numerically, using e.g. Simpson integration rule and
yny = P(NAT) cos wpr,

ANty = Ay EXp(—chnAT)—I—
AT

Mo [yn eXp(—2CwWnAT) + 4y 1 €Xp(—CWnAT) + Yy ]

N=0,24,-




