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Introduction

A periodic loading is characterized by the identity

p(t) = p(t + T)

where T is the period of the loading, andωͩ = ͪπ
T is its

principal frequency.

           

p

t

p(t + T)p(t)
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Introduction

Periodic loadings can be expressed as an infinite series of
harmonic functions using Fourier theorem, e.g., an
antisymmetric loading is

p(t) = p(−t) =
∑∞

j=ͩ pj sin jωͩt =
∑∞

j=ͩ pj sinωjt.

The steady-state response of a SDOF system for a harmonic
loading ∆pj(t) = pj sinωjt is known; with βj = ωj/ωn it is:

xj,s-s =
pj
k D(βj, ζ) sin(ωjt − θ(βj, ζ)).

In general, it is possible to sum all steady-state responses,
the infinite series giving the SDOF response to p(t).
Due to the asymptotic behaviour of D(β; ζ) (D goes to zero
for large, increasing β) it is apparent that a good
approximation to the steady-state response can be obtained
using a limited number of low-frequency terms.
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Fourier Series

Using Fourier theorem any practical periodic loading can be
expressed as a series of harmonic loading terms.
Consider a loading of period Tp, its Fourier series is given by

p(t) = aͨ +

∞∑

j=ͩ

aj cosωjt +

∞∑

j=ͩ

bj sinωjt, ωj = jωͩ = j
ͪπ
Tp

,

where the harmonic amplitude coefficients have
expressions:

aͨ =
ͩ
Tp

∫ Tp

ͨ
p(t) dt, aj =

ͪ
Tp

∫ Tp

ͨ
p(t) cosωjt dt,

bj =
ͪ
Tp

∫ Tp

ͨ
p(t) sinωjt dt,

as, by orthogonality,
∫Tp
o p(t)cosωj dt =

∫Tp
o aj cosͪ ωjt dt =

Tp
ͪ aj,

etc etc.
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Fourier Coefficients

If p(t) has not an analytical representation and must be measured
experimentally or computed numerically, we may assume that it is
possible

(a) to divide the period in N equal parts ∆t = Tp/N,

(b) measure or compute p(t) at a discrete set of instants
tͩ, tͪ, . . . , tN, with tm = m∆t,

obtaining a discrete set of values pm, m = ͩ, . . . ,N (note that
pͨ = pN by periodicity).
Using the trapezoidal rule of integration, with pͨ = pN we can
write, for example, the cosine-wave amplitude coefficients,

aj u
ͪ∆t
Tp

N∑

m=ͩ

pm cosωjtm

=
ͪ
N

N∑

m=ͩ

pm cos(jωͩm∆t) =
ͪ
N

N∑

m=ͩ

pm cos
jm ͪπ
N

.

It’s worth to note that the discrete function cos jm ͪπ
N is periodic

with period N.
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Exponential Form

The Fourier series can be written in terms of the
exponentials of imaginary argument,

p(t) =

∞∑

j=−∞
Pj exp iωjt

where the complex amplitude coefficients are given by

Pj =
ͩ
Tp

∫ Tp

ͨ
p(t) exp iωjt dt, j = −∞, . . . , +∞.

For a sampled pm we can write, using the trapezoidal
integration rule and substituting tm = m∆t = mTp/N,
ωj = j ͪπ/Tp:

Pj u
ͩ
N

N∑

m=ͩ

pm exp(−i
ͪπ j m
N

),
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Undamped Response

We have seen that the steady-state response to the jth
sine-wave harmonic can be written as

xj =
bj
k

[
ͩ

ͩ − βͪ
j

]
sinωjt, βj = ωj/ωn,

analogously, for the jth cosine-wave harmonic,

xj =
aj
k

[
ͩ

ͩ − βͪ
j

]
cosωjt.

Finally, we write

x(t) =
ͩ
k



aͨ +

∞∑

j=ͩ

[
ͩ

ͩ − βͪ
j

]
(
aj cosωjt + bj sinωjt

)


 .
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Damped Response

In the case of a damped oscillator, we must substitute the
steady state response for both the jth sine- and cosine-wave
harmonic,

x(t) =
aͨ
k

+
ͩ
k

∞∑

j=ͩ

+(ͩ − βͪ
j ) aj − ͪζβj bj

(ͩ − βͪ
j )
ͪ + (ͪζβj)ͪ

cosωjt+

+
ͩ
k

∞∑

j=ͩ

+ͪζβj aj + (ͩ − βͪ
j ) bj

(ͩ − βͪ
j )
ͪ + (ͪζβj)ͪ

sinωjt.

As usual, the exponential notation is neater,

x(t) =

∞∑

j=−∞

Pj
k

exp iωjt
(ͩ − βͪ

j ) + i (ͪζβj)
.
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Example

As an example, consider the loading
p(t) = max{pͨ sin ͪπt

Tp , ͨ}

aͨ =
ͩ
Tp

∫ Tp/ͪ

ͨ
po sin

ͪπt
Tp

dt =
pͨ
π

,

aj =
ͪ
Tp

∫ Tp/ͪ

ͨ
po sin

ͪπt
Tp

cos
ͪπjt
Tp

dt =

{
ͨ for j odd
pͨ
π

[
ͪ

ͩ−jͪ

]
for j even,

bj =
ͪ
Tp

∫ Tp/ͪ

ͨ
po sin

ͪπt
Tp

sin
ͪπjt
Tp

dt =

{
pͨ
ͪ for j = ͩ
ͨ for n > ͩ.
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Example cont.

Assuming βͩ = ͫ/ͬ, from
p =

pͨ
π

(
ͩ + π

ͪ sinωͩt − ͪ
ͫ cos ͪωͩt − ͪ

ͩͭ cos ͬωͪt − . . .
)
with the

dynamic amplifiction factors

Dͩ =
ͩ

ͩ − (ͩ ͫͬ )
ͪ

=
ͩͮ
ͯ

,

Dͪ =
ͩ

ͩ − (ͪ ͫ
ͬ )

ͪ
= −

ͬ
ͭ
,

Dͬ =
ͩ

ͩ − (ͬ ͫ
ͬ )

ͪ
= −

ͩ
Ͱ

, Dͮ = . . .

etc, we have

x(t) =
pͨ
kπ

(
ͩ +

Ͱπ

ͯ
sinωͩt +

Ͱ
ͩͭ

cos ͪωͩt +
ͩ
ͮͨ

cos ͬωͩt + . . .

)

Take note, these solutions are particular solutions! If your solution
has to respect given initial conditions, you must consider also the
homogeneous solution.
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Response to Impulsive Loadings
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Nature of Impulsive Loadings

An impulsive load is characterized
I by a single principal impulse, and
I by a relatively short duration.

p(t)

t

I Impulsive or shock loads are of great importance for
the design of certain classes of structural systems, e.g.,
vehicles or cranes.

I Damping has much less importance in controlling the
maximum response to impulsive loadings because the
maximum response is reached in a very short time,
before the damping forces can dissipate a significant
portion of the energy input into the system.

I For this reason, in the following we’ll consider only the
undamped response to impulsive loads.
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Definition of Maximum Response

In general, when dealing with impulse response
characterized by its duration tͨ we are interested either in

a the maximum of the absolute values of maxima (named
also the peak value ) of the response ratio R(t) in
ͨ < t < tͨ or,

b if we have no maxima during the excitation phase (i.e.,
ẋ 6= ͨ in ͨ < t < tͨ) we want to know the amplitude of
the free vibrations that are excited by the impulse.
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Half-sine Wave Impulse

The sine-wave impulse has expression

p(t) =

{
pͨ sin

πt
tͨ

= pͨ sinωt for ͨ < t < tͨ,
ͨ otherwise.

p0

0.5 p0

0

t00.5 t0   0.0

p(
t)

time

where ω = ͪπ
ͪtͨ

is the
frequency associated with the
load. Note thatω tͨ = π.
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Response to sine-wave impulse

Consider an undamped SDOF initially at rest, with natural
circular frequencyωn and stiffness k. With reference to a
half-sine impulse with duration tͨ, the frequency ratio β is
ω/ωn = Tn/ͪtͨ.
Its response ratio in the interval ͨ < t < tͨ is

R(t) =
ͩ

ͩ − βͪ (sinωt − β sin
ωt
β

) [NB:
ω

β
= ωn]

while for t > tͨ the response ratio is

R(t) =
−β

ͩ − βͪ

(
(ͩ + cos

π

β
)sinωn(t − tͨ) + sin

π

β
cosωn(t − tͨ)

)
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Maximum response to sine impulse

(a) Since we are interested in the maximum response ratio
during the excitation, we need to know when velocity is
zero in the time interval ͨ ≤ t ≤ tͨ; from

Ṙ(t) =
ω

ͩ − βͪ (cosωt − cos
ωt
β

) = ͨ.

we can see that the roots are
ωt = ∓ωt/β + ͪnπ, n = ͨ,∓ͩ, ∓ͪ, ∓ͫ, . . . ; it is convenient
to substituteωt = πα, where α = t/tͨ; substituting and
solving for α one has

α =
ͪnβ
β ∓ ͩ

, with n = ͨ, ∓ͩ, ∓ͪ, . . . , for ͨ < α < ͩ.

The next slide regards the characteristics of these roots.
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α(β, n)
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αmax(β,n): locations of response maxima,
αmax(β,n) = (2n β)/(β+1)

αmin(β,n): locations of response minima,
αmin(β,n) = (2n β)/(β‐1)

αmax(β,+1)

αmax(β,‐1)

αmax(β,+2)

αmax(β,‐2)

αmax(β,+3)

αmax(β,‐3)

αmax(β,+4)

αmax(β,‐4)

αmax(β,+5)

αmin(β,+1)

αmin(β,‐1)

αmin(β,+2)

αmin(β,‐2)

αmin(β,+3)

αmin(β,‐3)

αmin(β,+4)

αmin(β,‐4)
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α(β, n)
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α=t/t0

αmax(β,n): locations of response maxima,
αmax(β,n)=(2n β)/(β+1)

αmin(β,n): locations of response minima,
αmin(β,n)=(2n β)/(β-1)

αmax(β,+1)
αmax(β,-1)
αmax(β,+2)
αmax(β,-2)
αmax(β,+3)
αmax(β,-3)
αmax(β,+4)
αmax(β,-4)
αmax(β,+5)

αmin(β,+1)
αmin(β,-1)
αmin(β,+2)
αmin(β,-2)
αmin(β,+3)
αmin(β,-3)
αmin(β,+4)
αmin(β,-4)

- No roots of typeαmin for n > ͨ;

- no roots of typeαmax for n < ͨ;

- no roots forβ > ͩ, i.e., no roots
for tͨ <

Tn
ͪ ;

- only one root of typeαmax for
ͩ
ͫ < β < ͩ, i.e.,
Tn
ͪ < tͨ <

ͫTn
ͪ ;

- three roots, two maxima and
one minimum, for ͩ

ͭ < β < ͩ
ͫ ;

- five roots, three maxima and two
minima, for ͩ

ͯ < β < ͩ
ͭ ;

- etc etc.

In summary, to find the maximum of the response for an
assigned β < ͩ, one has (a) to compute all αk = ͪkβ

β+ͩ until a
root is greater than ͩ, (b) compute all the responses for
tk = αktͨ, (c) choose the maximum of the maxima.
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Maximum response for β > ͩ

For β > ͩ, the maximum response takes place for t > tͨ, and
its absolute value (see slide Response to sine-wave impulse) is

Rmax =
β

ͩ − βͪ

√
(ͩ + cos

π

β
)ͪ + sinͪ

π

β
,

using a simple trigonometric identity we can write

Rmax =
β

ͩ − βͪ

√
ͪ + ͪ cos

π

β

but
ͩ+ cos ͪφ = (cosͪ φ+ sinͪ φ)+ (cosͪ φ− sinͪ φ) = ͪ cosͪ φ,
so that

Rmax =
ͪβ

ͩ − βͪ cos
π

ͪβ
.
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Rectangular Impulse

Cosider a rectangular impulse of duration tͨ,

p(t) = pͨ

{
ͩ for ͨ < t < tͨ,
ͨ otherwise. 0

po

0 to

The response ratio and its time derivative are

R(t) = ͩ − cosωnt, Ṙ(t) = ωn sinωnt,

and we recognize that we have maxima Rmax = ͪ for
ωnt = nπ, with the condition t ≤ tͨ. Hence we have no
maximum during the loading phase for tͨ < Tn/ͪ, and at
least one maximum, of value ͪ∆st, if tͨ ≥ Tn/ͪ.
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Rectangular Impulse (ͪ)

For shorter impulses, the maximum response ratio is not
attained during loading, so we have to compute the
amplitude of the free vibrations after the end of loading
(remember, as tͨ ≤ Tn/ͪ the velocity is positive at t = tͨ!).

R(t) = (ͩ−cosωntͨ) cosωn(t−tͨ)+(sinωntͨ) sinωn(t−tͨ).

The amplitude of the response ratio is then

A =

√
(ͩ − cosωntͨ)ͪ + sinͪ ωntͨ =

=
√
ͪ(ͩ − cosωntͨ) = ͪ sin

ωntͨ
ͪ

.
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Triangular Impulse

Let’s consider the response of a SDOF to a triangular
impulse,

p(t) = pͨ (ͩ − t/tͨ) for ͨ < t < tͨ 0

po

0 to

As usual, we must start finding the minimum duration that
gives place to a maximum of the response in the loading
phase, that is

R(t) =
ͩ

ωntͨ
sinωn

t
tͨ

− cosωn
t
tͨ

+ ͩ −
t
tͨ

, ͨ < t < tͨ.

Taking the first derivative and setting it to zero, one can see
that the first maximum occurs for t = tͨ for tͨ = ͨ.ͫͯͩͨͩTn,
and substituting one can see that Rmax = ͩ.
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Triangular Impulse (ͪ)

For load durations shorter than ͨ.ͫͯͩͨͩTn, the maximum
occurs after loading and it’s necessary to compute the
displacement and velocity at the end of the load phase.
For longer loads, the maxima are in the load phase, so that
one has to find the all the roots of Ṙ(t), compute all the
extreme values and finally sort out the absolute value
maximum.
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Shock or response spectra
We have seen that the response ratio is determined by the ratio of the impulse
duration to the natural period of the oscillator. One can plot the maximum
displacement ratio Rmax as a function of to/Tn for various forms of impulsive loads.
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Such plots are commonly known as displacement-response spectra, or simply as

response spectra.
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Approximate Analysis

For long duration loadings, the maximum response ratio
depends on the rate of the increase of the load to its
maximum: for a step function we have a maximum response
ratio of ͪ, for a slowly varying load we tend to a quasi-static
response, hence a factor u ͩ
On the other hand, for short duration loads, the maximum
displacement is in the free vibration phase, and its amplitude
depends on the work done on the system by the load.
The response ratio depends further on the maximum value
of the load impulse, so we can say that the maximum
displacement is a more significant measure of response.
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Approximate Analysis (ͪ)

An approximate procedure to evaluate the maximum
displacement for a short impulse loading is based on the
impulse-momentum relationship,

m∆ẋ =

∫ tͨ

ͨ
[p(t) − kx(t)] dt.

When one notes that, for small tͨ, the displacement is of the
order of tͪͨ while the velocity is in the order of tͨ, it is
apparent that the kx term may be dropped from the above
expression, i.e.,

m∆ẋ u
∫ tͨ

ͨ
p(t) dt.
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Approximate Analysis (ͫ)

Using the previous approximation, the velocity at time tͨ is

ẋ(tͨ) =
ͩ
m

∫ tͨ

ͨ
p(t) dt,

and considering again a negligibly small displacement at the
end of the loading, x(tͨ) u ͨ, one has

x(t − tͨ) u
ͩ

mωn

∫ tͨ

ͨ
p(t) dt sinωn(t − tͨ).

Please note that the above equation is exact for an
infinitesimal impulse loading (and will be discovered again in
a few minutes).
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Response to General Dynamic Loading
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Undamped SDOF

For an infinitesimal impulse, the impulse-momentum is
exactly p(τ) dτ and the response is

dx(t − τ) =
p(τ) dτ
mωn

sinωn(t − τ), t > τ,

and to evaluate the response at time t one has simply to sum
all the infinitesimal contributions for τ < t,

x(t) =
ͩ

mωn

∫ t

ͨ
p(τ) sinωn(t − τ) dτ, t > ͨ.

This relation is known as the Duhamel integral, and tacitly
depends on initial rest conditions for the system.
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Damped SDOF

The derivation of the equation of motion for a generic load
is analogous to what we have seen for undamped SDOF, the
infinitesimal contribution to the response at time t of the
load at time τ is

dx(t) =
p(τ)

mωD
dτ sinωD(t − τ) exp(−ζωn(t − τ)) t ≥ τ

and integrating all infinitesimal contributions one has

x(t) =
ͩ

mωD

∫ t

ͨ
p(τ) sinωD(t−τ) exp(−ζωn(t−τ)) dτ, t ≥ ͨ.
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Evaluation of Duhamel integral, undamped

Using the trig identity

sin(ωnt − ωnτ) = sinωnt cosωnτ − cosωnt sinωnτ

the Duhamel integral is rewritten as

x(t) =

∫t
ͨ p(τ) cosωnτ dτ

mωn
sinωnt −

∫t
ͨ p(τ) sinωnτ dτ

mωn
cosωnt

= A(t) sinωnt − B(t) cosωnt

where {
A(t) = ͩ

mωn

∫t
ͨ p(τ) cosωnτ dτ

B(t) = ͩ
mωn

∫t
ͨ p(τ) sinωnτ dτ
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Numerical evaluation of Duhamel integral,
undamped

Usual numerical procedures can be applied to the evaluation
of A and B, e.g., using the trapezoidal rule, one can have,
withAN = A(N∆τ) and yN = p(N∆τ) cos(N∆τ)

AN+ͩ = AN +
∆τ

ͪmωn

(
yN + yN+ͩ

)
.
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Evaluation of Duhamel integral, damped

For a damped system, it can be shown that

x(t) = A(t) sinωDt − B(t) cosωDt

with

A(t) =
ͩ

mωD

∫ t

ͨ
p(τ)

exp ζωnτ

exp ζωnt
cosωDτ dτ,

B(t) =
ͩ

mωD

∫ t

ͨ
p(τ)

exp ζωnτ

exp ζωnt
sinωDτ dτ.
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Numerical evaluation of Duhamel integral,
damped

Numerically, using e.g. Simpson integration rule and
yN = p(N∆τ) cosωDτ,

AN+ͪ = AN exp(−ͪζωn∆τ)+

∆τ

ͫmωD

[
yN exp(−ͪζωn∆τ) + ͬyN+ͩ exp(−ζωn∆τ) + yN+ͪ

]

N = ͨ, ͪ, ͬ, · · ·


