
SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform

SDOF linear oscillator
Frequency Domain Analysis

Giacomo Boffi

Dipartimento di Ingegneria Strutturale, Politecnico di Milano

March 30, 2011

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform

Outline

Fourier Transform
Extension of Fourier Series to non periodic functions
Response in the Frequency Domain

The Discrete Fourier Transform
The Discrete Fourier Transform
Aliasing

The Fast Fourier Transform
The Fast Fourier Transform

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform
Extension of Fourier Series
to non periodic functions
Response in the Frequency
Domain

The Discrete
Fourier Transform

The Fast Fourier
Transform

Non periodic loadings

It is possible to extend the Fourier analysis to non periodic
loading. Let’s start from the Fourier series representation of
the load p(t),

p(t) =

+∞∑

−∞
Pr exp(iωrt), ωr = r∆ω, ∆ω =

2π
Tp

,

introducing P(iωr) = PrTp and substituting,

p(t) =
1
Tp

+∞∑

−∞
P(iωr) exp(iωrt) =

∆ω

2π

+∞∑

−∞
P(iωr) exp(iωrt).

Due to periodicity, we can modify the extremes of
integration in the expression for the complex amplitudes,

P(iωr) =

∫+Tp/2

−Tp/2
p(t) exp(−iωrt)dt.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform
Extension of Fourier Series
to non periodic functions
Response in the Frequency
Domain

The Discrete
Fourier Transform

The Fast Fourier
Transform

Non periodic loadings (2)

If the loading period is extended to infinity to represent the
non-periodicity of the loading (Tp →∞) then (a) the frequency
increment becomes infinitesimal (∆ω = 2π

Tp
→ dω) and (b) the discrete

frequency ωr becomes a continuous variable, ω.
In the limit, for Tp →∞ we can then write

p(t) =
1

2π

∫+∞

−∞
P(iω) exp(iωt)dω

P(iω) =

∫+∞

−∞
p(t) exp(−iωt)dt,

which are known as the inverse and the direct Fourier Transforms,
respectively, and are collectively known as the Fourier transform pair.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform
Extension of Fourier Series
to non periodic functions
Response in the Frequency
Domain

The Discrete
Fourier Transform

The Fast Fourier
Transform

SDOF Response

In analogy to what we have seen for periodic loads, the response of a
damped SDOF system can be written in terms of H(iω), the complex
frequency response function,

x(t) =
1

2π

∫+∞

−∞
H(iω)P(iω) exp iωtdt, where

H(iω) =
1
k

[
1

(1 − β2) + i(2ζβ)

]
=

1
k

[
(1 − β2) − i(2ζβ)
(1 − β2)2 + (2ζβ)2

]
, β =

ω

ωn
.

To obtain the response through frequency domain, you should evaluate
the above integral, but analytical integration is not always possible, and
when it is possible, it is usually very difficult, implying contour
integration in the complex plane (for an example, see Example E6-3 in
Clough Penzien).

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform
The Discrete Fourier
Transform
Aliasing

The Fast Fourier
Transform

Discrete Fourier Transform

To overcome the analytical difficulties associated with the inverse
Fourier transform, one can use appropriate numerical methods, leading
to good approximations.
Consider a loading of finite period Tp, divided into N equal intervals
∆t = Tp/N, and the set of values ps = p(ts) = p(s∆t). We can
approximate the complex amplitude coefficients with a sum,

Pr =
1
Tp

∫Tp
0
p(t) exp(−iωrt)dt, that, by trapezoidal rule, is

u
1
N∆t

(
∆t

N−1∑

s=0
ps exp(−iωrts)

)
=

1
N

N−1∑

s=0
ps exp(−i2πrs

N
).

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform
The Discrete Fourier
Transform
Aliasing

The Fast Fourier
Transform

Discrete Fourier Transform (2)

In the last two passages we have used the relations
pN = p0, exp(iωrtN) = exp(ir∆ωTp) = exp(ir2π) = exp(i0)

ωr ts = r∆ωs∆t = rs
2π
Tp

Tp

N
=

2π rs
N

.

Take note that the discrete function exp(−i 2πrs
N

), defined for integer
r, s is periodic with period N, implying that the complex amplitude
coefficients are themselves periodic with period N.

Pr+N = Pr

Starting in the time domain with N distinct complex numbers, ps, we
have found that in the frequency domain our load is described by N
distinct complex numbers, Pr, so that we can say that our function is
described by the same amount of information in both domains.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform
The Discrete Fourier
Transform
Aliasing

The Fast Fourier
Transform

Aliasing

Only N/2 distinct frequen-
cies (

∑N−1
0 =

∑+N/2
−N/2) con-

tribute to the load repre-
sentation, what if the fre-
quency content of the loading
has contributions from fre-
quencies higher than ωN/2?
What happens is aliasing,
i.e., the upper frequencies
contributions are mapped to
contributions of lesser fre-
quency.

-1

-0.5

 0

 0.5

 1

0 1/4 Tp

sin(21 * (2π)/Tp * s Tp/N), N=20, s=0,..,20
sin(22 * (2π)/Tp * s Tp/N), N=20, s=0,..,20

See the plot above: the contributions from the high frequency sines,
when sampled, are indistinguishable from the contributions from lower
frequency components, i.e., are aliased to lower frequencies!

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform
The Discrete Fourier
Transform
Aliasing

The Fast Fourier
Transform

Aliasing (2)

I The maximum frequency that can be described in the
DFT is called the Nyquist frequency, ωNy = 1

2
2π
∆t .

I It is usual in signal analysis to remove the signal’s
higher frequency components preprocessing the signal
with a filter or a digital filter.

I It is worth noting that the resolution of the DFT in the
frequency domain for a given sampling rate is
proportional to the number of samples, i.e., to the
duration of the sample.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Fast Fourier Transform (1)

The algorithm is the same for bot direct and inverse DFT, so let us
consider the direct transform,

Ar = PrN =

N−1∑

s=0
ps exp(−i2π rs

N
), r = 0, 1, 2, . . . ,N− 1

A straightforward implementation requires about N2 complex products,
becoming prohibitive for even moderately large N’s. The FFT is based
on the decomposition of N in a product of its factors, but the algorithm
was developed and is simpler to understand and implement if N = 2γ.
In this case each r, s in the interval 0, N− 1 can be expressed in terms
of binary (i.e., 0 or 1) coefficients

r = 2γ−1r
γ−1 + 2γ−2r

γ−2 + · · ·+ 20r0

s = 2γ−1s
γ−1 + 2γ−2s

γ−2 + · · ·+ 20s0

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Fast Fourier Transform (2)

With WN = exp(−i2π/N) we write

A(rγ−1, rγ−2, . . . , r0) =

1∑

s0=0

1∑

s1=0
· · ·

1∑

sγ−2=0

1∑

sγ−1=0
p0(sγ−1, sγ−2, . . . , s0)W

rs
N

The subscript 0 is added to the p coefficients for a reason that will
become apparent as the algorithm develops.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Fast Fourier Transform (3)

In the previous slide we wrote Wrs
N , but we have to use the binary

representation of r and s,

Wrs
N =W

(2γ−1r
γ−1+2γ−2r

γ−2+···+20r0)(2γ−1s
γ−1+2γ−2s

γ−2+···+20s0)
N

.
As Wa+b

N =Wa
NW

b
N, we can expand the equation above to separate

the contributions of the different binary indices in the binary
representation of s

Wrs
N =W

(2γ−1r
γ−1+2γ−2r

γ−2+···+20r0)(2γ−1s
γ−1)

N

×W(2γ−1r
γ−1+2γ−2r

γ−2+···+20r0)(2γ−2s
γ−2)

N

× · · · ×W(2γ−1r
γ−1+2γ−2r

γ−2+···+20r0)(20s0)
N

In the next slide we are going to rewrite each term in the above
expression, to obtain a surprising simplification.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Fast Fourier Transform (4)
The first term on the right in previous slide was

W
(2γ−1r

γ−1+2γ−2r
γ−2+···+20r0)(2γ−1s

γ−1)
N

expanding the exponent

=W
2γ(2γ−2rγ−1sγ−1)
N ×W2γ(2γ−3rγ−2sγ−1)

N × · · ·

· · · ×W2γ(21r1sγ−1)
N ×W2γ−1(r0sγ−1)

N

=W
2γ−1(20r0)sγ−1
N

because W2γ(integer)
N = 1.

In a similar manner, we have

W
(2γ−1r

γ−1+2γ−2r
γ−2+···+20r0)(2γ−2s

γ−2)
N =W

2γ−2(21r1+20r0)sγ−2
N

W
(2γ−1r

γ−1+2γ−2r
γ−2+···+20r0)(2γ−3s

γ−3)
N =W

2γ−3(22r2+21r1+20r0)sγ−3
N

· · ·

W
(2γ−1r

γ−1+2γ−2r
γ−2+···+20r0)(20s0)

N =W
20(2γ−1r

γ−1+2γ−2r
γ−2+···+20r0)s0

N

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Fast Fourier Transform (5)

Substituting all WN terms, in their reduced form,
A(rγ−1, rγ−2, . . . , r0) =

1∑

s0=0

1∑

s1=0
· · ·

1∑

sγ−2=0

1∑

sγ−1=0
p0(sγ−1, sγ−2, . . . , s0)×W2γ−1(20r0)sγ−1

N

×W2γ−2(21r1+20r0)sγ−2
N × · · · ×W20(2γ−1r

γ−1+2γ−2r
γ−2+···+20r0)s0

N

Carrying out all summations in succession, we have
1∑

sγ−1=0
p0(sγ−1, sγ−2, . . . , s0)×W2γ−1(20r0)sγ−1

N ≡ p1(r0, sγ−2, . . . , s0)

1∑

sγ−2=0
p1(r0, sγ−2, . . . , s0)×W2γ−2(21r1+20r0)sγ−2

N ≡ p2(r0, r1, sγ−3, . . . , s0)

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Fast Fourier Transform (6)

Proceding with the summations, we arrive at the last one, that gives us
the coefficients An

1∑

s0=0
pγ−1(r0, r1, . . . rγ−2, s0)×W

20(2γ−1r
γ−1+2γ−2r

γ−2+···+20r0)s0
N

≡ pγ(r0, r1, . . . , rγ−2, rγ−1)

≡ A(rγ−1, rγ−2, . . . , r0)
The coefficients are computed in an order different from what intended
(we have the so called bit reversal), but it’s simple to reorder them.
Our last remark, the number of multiplications using the Cooley-Tukey
algorithm is in the order of N log(N), the savings even for moderately
large N with respect to N2 are well worth the complication of the FFT
algorithm.
FFT looks complex? Here it is an example of a simple, standard
implementation of the FFT.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Alternative Algorithm

Decimation in Time algorithm by Tukey and Cooley (1965), assume N is
even, and divide the DFT summation to consider even and odd indices s

Xr =

N−1∑

s=0
xse

− 2πi
N sr, r = 0, . . . ,N− 1

=

N/2−1∑

q=0
x2qe

− 2πi
N (2q)r +

N/2−1∑

q=0
x2q+1e

− 2πi
N (2q+1)r

collecting e− 2πi
N r in the second term and letting 2q

N
= q
N/2

=

N/2−1∑

q=0
x2qe

− 2πi
N/2qr + e−

2πi
N r

N/2−1∑

q=0
x2q+1e

− 2πi
N/2qr

We have two DFT’s of length N/2, the operations count is hence
2(N/2)2 = N2/2, but we have to combine these two halves in the full
DFT.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Alternative 2

Say that
Xr = Er + e

− 2πi
N rOr

where Er and Or are the even and odd half-DFT’s, of which we
computed only coefficients from 0 to N/2 − 1.
To get the full sequence we have to note that

1. the E and O DFT’s are periodic with period N/2, and
2. exp(−2πi(r+N/2)/N) = e−πi exp(−2πir/N) = − exp(−2πir/N),

so that we can write

Xr =

{
Er + exp(−2πir/N)Or if r < N/2,
Er−N/2 − exp(−2πir/N)Or−N/2 if r > N/2.

The algorithm that was outlined can be applied to the computation of
each of the half-DFT’s when N/2 were even, so that the operation
count goes to N2/4. If N/4 were even ...

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Pseudocode for CT algorithm

def fft2(X, N):
if N = 1 then

Y = X
else

Y0 = fft2(X0, N/2)
Y1 = fft2(X1, N/2)
for k = 0 to N/2-1

Y˙k = Y0˙k + exp(2 pi i k/N) Y1˙k
Y˙(k+N/2) = Y0˙k - exp(2 pi i k/N) Y1˙k

endfor
endif

return Y

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Dynamic Response (1)

To evaluate the dynamic response of a linear SDOF system in the
frequency domain, use the inverse DFT,

xs =

N−1∑

r=0
Vr exp(i2π rs

N
), s = 0, 1, . . . ,N− 1

where Vr = Hr Pr. Pr are the discrete complex amplitude coefficients
computed using the direct DFT, and Hr is the discretization of the
complex frequency response function, that for viscous damping is

Hr =
1
k

[
1

(1 − β2
r) + i(2ζβr)

]
=

1
k

[
(1 − β2

r) − i(2ζβr)
(1 − β2

r)
2 + (2ζβr)2

]
, βr =

ωr

ωn
.

while for hysteretic damping is
Hr =

1
k

[
1

(1 − β2
r) + i(2ζ)

]
=

1
k

[
(1 − β2

r) − i(2ζ)
(1 − β2

r)
2 + (2ζ)2

]
.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Some words of caution

If you’re going to approach the application of the complex
frequency response function without proper concern, you’re
likely to be hurt.
Let’s say ∆ω = 1.0, N = 32, ωn = 3.5 and r = 30, what do
you think it is the value of β30? If you are thinking
β30 = 30∆ω/ωn = 30/3.5 ≈ 8.57 you’re wrong!

Due to aliasing, ωr =
{
r∆ω r 6 N/2
(r−N)∆ω r > N/2

,

note that in the upper part of the DFT the coefficients
correspond to negative frequencies and, staying within our
example, it is β30 = (30 − 32)× 1/3.5 ≈ −0.571.
If N is even, PN/2 is the coefficient corresponding to the
Nyquist frequency, if N is odd PN−1

2
corresponds to the

largest positive frequency, while PN+1
2

corresponds to the
largest negative frequency.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Transfer Functions

The response of a linear SDOF system to arbitrary loading
can be evaluated by a convolution integral in the time
domain,

x(t) =

∫t

0
p(τ)h(t− τ)dτ,

with the unit impulse response function
h(t) = 1

mωD
exp(−ζωnt) sin(ωDt), or through the

frequency domain using the Fourier integral

x(t) =

∫+∞

−∞
H(ω)P(ω) exp(iωt)dω,

where H(ω) is the complex frequency response function.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Transfer Functions

These response functions, or transfer functions, are
connected by the direct and inverse Fourier transforms:

H(ω) =

∫+∞

−∞
h(t) exp(−iωt)dt,

h(t) =
1

2π

∫+∞

−∞
H(ω) exp(iωt)dω.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Relationship of transfer functions

We write the response and its Fourier transform:

x(t) =

∫t

0
p(τ)h(t− τ)dτ =

∫t

−∞
p(τ)h(t− τ)dτ

X(ω) =

∫+∞

−∞

[∫t

−∞
p(τ)h(t− τ)dτ

]
exp(−iωt)dt

the lower limit of integration in the first equation was
changed from 0 to −∞ because p(τ) = 0 for τ < 0, and
since h(t− τ) = 0 for τ > t, the upper limit of the second
integral in the second equation can be changed from t to
+∞,

X(ω) = lim
s→∞

∫+s

−s

∫+s

−s
p(τ)h(t− τ) exp(−iωt)dtdτ

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Relationship of transfer functions

Introducing a new variable θ = t− τ we have

X(ω) = lim
s→∞

∫+s

−s
p(τ) exp(−iωτ)dτ

∫+s−τ

−s−τ
h(θ) exp(−iωθ)dθ

with lim
s→∞

s− τ =∞, we finally have

X(ω) =

∫+∞

−∞
p(τ) exp(−iωτ)dτ

∫+∞

−∞
h(θ) exp(−iωθ)dθ

= P(ω)

∫+∞

−∞
h(θ) exp(−iωθ)dθ

where we have recognized that the first integral is the
Fourier transform of p(t).

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

Relationship of transfer functions

Our last relation was

X(ω) = P(ω)

∫+∞

−∞
h(θ) exp(−iωθ)dθ

but X(ω) = H(ω)P(ω), so that, noting that in the above
equation the last integral is just the Fourier transform of
h(θ), we may conclude that, effectively, H(ω) and h(t)
form a Fourier transform pair.

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

from cmath import exp , p i

def d f f t (x , n) :
””” D i r e c t f f t o f x , a l i s t o f n=2∗∗m complex v a l u e s ”””
r e t u r n f f t (x , n , [exp(−2∗ p i ∗1 j∗k/n) f o r k i n r a n g e (n / 2)])

def i f f t (x , n) :
””” I n v e r s e f f t o f x , a l i s t o f n=2∗∗m complex v a l u e s ”””
r e t u r n [x /n f o r x i n f f t (x , n , [exp (+2∗ p i ∗1 j∗k/n) f o r k i n r a n g e (n / 2)])]

def f f t (x , n , t w i d d l e) :
””” Dec imat ion i n Time FFT , to be c a l l e d by d f f t and i f f t .
x i s the s i g n a l to t rans fo rm , a l i s t o f complex v a l u e s
n i s i t s l eng th , r e s u l t s a r e u n d e f i n e d i f n i s not a power o f 2
tw i s a l i s t o f t w i d d l e f a c t o r s , precomputed by the c a l l e r

r e t u r n s a l i s t o f complex v a l u e s , to be n o r m a l i z e d i n ca se o f an
i n v e r s e t r a n s f o r m ”””

i f n == 1 : r e t u r n x # bottom reached , DFT o f a l e n g t h 1 vec x i s x

c a l l f f t w i th the even and the odd c o e f f i c i e n t s i n x
the r e s u l t s a r e the so c a l l e d even and odd DFT ’ s
y 0 = f f t (x [0 : : 2] , n /2 , tw [: : 2])
y 1 = f f t (x [1 : : 2] , n /2 , tw [: : 2])

assemb le the p a r t i a l r e s u l t s ” i n p l a c e ” :
1 s t h a l f o f f u l l DFT i s put i n even DFT, 2nd h a l f i n odd DFT
f o r k i n r a n g e (n / 2) :

y 0 [k] , y 1 [k] = y 0 [k]+tw [k]∗ y 1 [k] , y 0 [k]−tw [k]∗ y 1 [k]

c o n c a t e n a t e the two h a l v e s o f the DFT and r e t u r n to c a l l e r
r e t u r n y 0+y 1

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform
The Fast Fourier Transform

def main () :
”””Run some t e s t c a s e s ”””
from cmath import cos , s i n , p i

def t e s t i t (t i t l e , seq) :
””” u t i l i t y to fo rmat and p r i n t a v e c t o r and the i f f t o f i t s f f t ”””
l s e q = l e n (seq)
p r i n t ”−”∗5 , t i t l e , ”−”∗5
p r i n t ”\n” . j o i n ([

” %10.6 f : : %10.6 f , %10.6 f j ” % (a . r e a l , t . r e a l , t . imag)
f o r (a , t) i n z i p (seq , i f f t (d f f t (seq , l s e q) , l s e q))
])

l e n g t h = 32

t e s t i t (” Square wave ” , [+1.0+0.0 j]∗ (l e n g t h /2) + [−1.0+0.0 j]∗ (l e n g t h / 2))
t e s t i t (” S i n e wave ” , [s i n ((2∗ p i∗k)/ l e n g t h) f o r k i n r a n g e (l e n g t h)])
t e s t i t (” C o s i n e wave ” , [cos ((2∗ p i∗k)/ l e n g t h) f o r k i n r a n g e (l e n g t h)])

i f n a m e == ” m a i n ” :
main ()

