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Non periodic loadings

It is possible to extend the Fourier analysis to non periodic
loading. Let's start from the Fourier series representation of
the load p(t),

+oo
2
p(t) = Z Prexp(iw,t), wy=TAw, Aw = T—T[
= P

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

Extension of Fourier Series
to non periodic functions

Response in the Frequency
Domain

The Discrete
Fourier Transform

The Fast Fourier
Transform



SDOF linear

Non periodic loadings oscilator
Giacomo Boffi
It is possible to extend the Fourier analysis to non periodic o
ourier Transform
loading. Let's start from the Fourier series representation of e e
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introducing P(iw,) = P; T, and substituting,

1 > Aw oo
p(t) = T ; P(iw,) exp(iw,t) = o ;@ P(iw,) exp(iwyt).



Non periodic loadings

It is possible to extend the Fourier analysis to non periodic
loading. Let's start from the Fourier series representation of

the load p(t),

“+00 o
p(t) = Z Prexp(iw,t), wy=TAw, Aw = T
—00 P

introducing P(iw,) = P; T, and substituting,

1 Aw &
p(t) = T ; P(iwr) expliwst) = = — ;@ P(iw,) exp(iwrt).

Due to periodicity, we can modify the extremes of

integration in the expression for the complex amplitudes,
+Tp/2

J p(t) exp(—iw,t) dt.

—T,/2
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Non periodic loadings (2)

If the loading period is extended to infinity to represent the
non-periodicity of the loading (T, — 00) then (a) the frequency
increment becomes infinitesimal (Aw = % — dw) and (b) the discrete
frequency w, becomes a continuous variable, w.

In the limit, for T, — co we can then write

p(t) L J'+oo P(iw) exp(iwt) dw

= B
Piw) = J'Ho p(t) exp(—iwt) dt,

which are known as the inverse and the direct Fourier Transforms,

respectively, and are collectively known as the Fourier transform pair.
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Extension of Fourier Series
to non periodic functions

In analogy to what we have seen for periodic loads, the response of a Resporse i the Freqncy
damped SDOF system can be written in terms of H(iw), the complex o
. The Discrete
frequency response function, Fourier Transform
1 +o00 The Fast Fourier
x(t) = —J H(iw) P(iw) expiwt dt, where =iy
21 J_o
1 1 1] (1-pB2%—i(2
Hﬁw):,[ L }:,{( B)—i20B) )
k [(1—p2)+1i(2¢B) k [(1—p2)%+(2¢B) Wn

To obtain the response through frequency domain, you should evaluate
the above integral, but analytical integration is not always possible, and
when it is possible, it is usually very difficult, implying contour

integration in the complex plane (for an example, see Example E6-3 in

Clough Penzien).
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To overcome the analytical difficulties associated with the inverse IiDbc s

Fourier transform, one can use appropriate numerical methods, leading Aliasing

to good approximations. The Fast Fourier
Transform

Consider a loading of finite period T, divided into N equal intervals
At =T,/N, and the set of values p; = p(ts) = p(sAt). We can
approximate the complex amplitude coefficients with a sum,

1

Tp
P. = —J p(t) exp(—iw,t) dt, that, by trapezoidal rule, is
0

1 =t . 27rrs
~ NAT <At Z s exp(—iw,ts ) =N Z ).

s=0
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The Discrete

In the last two passages we have used the relations Fourier Transform
PN =Po,  expl(iw,tn) = exp(irAwT,) = exp(ir2n) = exp(i0)
2nT, 27mrs e

Wty =TAWSAt =15 — — . The Fast Fourier
T N N Transform

Take note that the discrete function exp(— 27,‘\]“) defined for integer
T, s is periodic with period N, implying that the complex amplitude

coefficients are themselves periodic with period N.
Pr+N = Pr

Starting in the time domain with N distinct complex numbers, ps, we
have found that in the frequency domain our load is described by N
distinct complex numbers, P, so that we can say that our function is

described by the same amount of information in both domains.



Aliasing

Only N/2 distinct frequen-
cies (X0 7" = thfg) con-
tribute to the load repre-
sentation, what if the fre-
quency content of the loading
has contributions from fre-
quencies higher than wy 27
What happens is aliasing,
i.e., the upper frequencies
contributions are mapped to
contributions of lesser fre-
quency.

See the plot above: the contributions from the high frequency sines,

when sampled, are indistinguishable from the contributions from lower

Sin(21 * 2T/, * s Ty/N), N=;
sin(22 * (2T0/T) * s TE/N), N=20

X

0

14T,

frequency components, i.e., are aliased to lower frequencies!
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Aliasing (2)

» The maximum frequency that can be described in the

DFT is called the Nyquist frequency, wyy = %%

» It is usual in signal analysis to remove the signal's
higher frequency components preprocessing the signal
with a filter or a digital filter.

» It is worth noting that the resolution of the DFT in the
frequency domain for a given sampling rate is
proportional to the number of samples, i.e., to the
duration of the sample.
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The algorithm is the same for bot direct and inverse DFT, so let us The Discrete
Fourier Transform

consider the direct transform,
The Fast Fourier

N—1 Transform
27rs The Fast Fourier Transform
Ar:PTNzg psexp(—i ) r=0,12,...,N—1
s=0

A straightforward implementation requires about N? complex products,
becoming prohibitive for even moderately large N's. The FFT is based
on the decomposition of N in a product of its factors, but the algorithm
was developed and is simpler to understand and implement if N = 2V,
In this case each 1, s in the interval 0, N — 1 can be expressed in terms
of binary (i.e., 0 or 1) coefficients

=201+ 2772”72 + 420,

—1 -2 0
§=2""s | +2V%s ,+---+ 2,
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With Wy = exp(—i27t/N) we write

1 1 1 1
A(I'y,]_, Fy—2,..., I’o) = Z Z s Z Z po(Syfl,Syfg, . ,So)W]T\IS

so=0s;=0 sy-—2=0sy_1=0

The subscript o is added to the p coefficients for a reason that will
become apparent as the algorithm develops.
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In the previous slide we wrote W[} , but we have to use the binary
representation of r and s,

W =Wy,

2y _1r,y 1 +2Y _zr,yi2 +~~+2°r0 )(2Y _ls,yi1 +2Y_2sy72+~~~—0—2°s0 )

DA

Fourier Transform

The Fast Fourier
Transform



Fast Fourier Transform (3)

In the previous slide we wrote W[ , but we have to use the binary
representation of r and s,

Tr, 422 20 (2 s 42 s et 20s))

(2Y
Wo =Wy 7

As W™ = W& WP, we can expand the equation above to separate
the contributions of the different binary indices in the binary
representation of s

—1 —2 0 —1
2y r1/714r2Y ry72+-~+2 ro)(2y syil)

TS __
W = Wy,
1 —2 0 —2
% W(2y ry71+2y ry72+---+2 ro)(2Y sy72)
N

(2Y71ry71 +2V72ryi2+-~+20r0)(2050)

X o x Wy
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Fast Fourier Transform (3) Al ki
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In the previous slide we wrote W} , but we have to use the binary Fourier Transform

representation of r and s, The Discrete

Fourier Transform

1 2 0 1 2 0 H
WIS — W(2V 1 +2Y ry72+»--+2 re)(2Y Sy_1 +2Y sy72+---+2 so) The Fast Fourier
N — N Transform

The Fast Fourier Transform

As W™ = W& WP, we can expand the equation above to separate
the contributions of the different binary indices in the binary
representation of s

—1 —2 0 —1
2y r1/714r2Y ry72+-~+2 ro)(ZV syil)

TS __
W =Wy
1 —2 0 —2
% W(2y ry71+2y ry72+---+2 ro)(2y sy72)
N
—1 —2 0 0
o x W(2Y ry71+2Y ry72+~~+2 ro)(2 50)
N

In the next slide we are going to rewrite each term in the above

expression, to obtain a surprising simplification.
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The first term on the right in previous slide was

X 5 o 1 Fourier Transform
(Yt 42Y 2 20 (2Y s y)

N The Discrete

Fourier Transform

expanding the exponent The Fast Fourier

Transform

2V =20, s, V=3, s [T Fas ot Tratorm.
_W2 vy —15y 1) Wz( Y —25y I)X"'

Y (2 15y 1) Y 1 (rosy 1)
x WA Brsy= oy 2l sy
_Wzv 2c”osvl
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The first term on the right in previous slide was
(2v—1 v—2 0, y(2v—1 ) Fourier Transform
2V "y A2Y T 291 )(2Y T s
N i i ’ v The Discrete

Fourier Transform

expanding the exponent The Fast Fourier

Transform

—W2 (2Y2ry 15y 1) W2 (@ ey asy1) [ The Fast Fourier Transorm.
Y (2lrisy 1) Y 1 (rosy 1)
x Way Brsvth Wil tosy =
_Wzv 12 )sy 1

27 (int
because Wi, "5 — 1.
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Fast Fourier Transform (4)
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The first term on the right in previous slide was

(2V*1ry71 +27*2ry72+~»+2°r0 )(2Y s

N

expanding the exponent

2Y (2Y 2r, sy 1)
=Wy x Wy

2Y (21rlsy,1

X W Fxw

2v—1 (2c'r0 sy 1
- N

2 (int
because W7, ") — 1.

In a similar manner, we have

(2Y *1fy —1 +27 2 Ty—2 erJr20'0 )2y 7251’ —)
N

(2Y *1fy —1 +27 2 Ty—2 erJr20'0 )2y 7351’ —3)
N

(2Y71rv71+2772ry72+~~+20r0 )(2%,)
N

2Y (2 SBry _psy 1)

Fourier Transform

)
—1
Y The Discrete

Fourier Transform
The Fast Fourier

Transform

The Fast Fourier Transform

X o

2Y L (rgsy 1)
N

2Y —2(2tr +20r )y

N

2Y —3(22r, 421 +20r )5y 3
N

20(ZV71ry71+2772ry72+“*+20r0 )so
N



Fast Fourier Transform (5)

Substituting all Wy terms, in their reduced form,

A(fy—1,Fy—2,...,10) =
1 1

11
ZZ Z Z p0(5771,5y72,___,50) XW§V71(2OYO)SV71

sop=0s;=0 sy—2=0sy _1=0
2Y =221 420 s, 2002y —tr L 42Y 2+ 420r)sp
1 0’7y v—1 Y—2 0
x Wy x - x Wy
Carrying out all summations in succession, we have
1
2V —1(20r )5, 4
0 /Sy _
z PolSy—1,Sy—2,...,50) X Wy =p1(ro,Sy—2,-..,50)
sy —1=0
2Y72(21r1 +20r0)sy72

1
Z P1(ro,Sy—2,...,50) x Wy = pa(ro, ri,Sy—3,---,50)

sy —2=0
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Fast Fourier Transform (6)

Proceding with the summations, we arrive at the last one, that gives us
the coefficients A,
1
202y =ty 42Y =2 4. 420r )5
Zpy&(ro,rl,---l’yfzso)><WN v v? 0

sop=0
=py(ro,r, ... ry—2,ry-1)

=A(ry_1,ry—2,...,10)

The coefficients are computed in an order different from what intended

(we have the so called bit reversal), but it’s simple to reorder them.

Our last remark, the number of multiplications using the Cooley-Tukey

algorithm is in the order of Nlog(N), the savings even for moderately

large N with respect to N2 are well worth the complication of the FFT

algorithm.

FFT looks complex? Here it is an example of a simple, standard

implementation of the FFT.
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http://www.phys.uu.nl/~haque/computing/WPark_recipes_in_python.html#Sec6

Alternative Algorithm

Decimation in Time algorithm by Tukey and Cooley (1965), assume N is
even, and divide the DFT summation to consider even and odd indices s

s=0

N/2—1 N/2—1

= X2q672§i(2q)r+ Z X2q+1e*2§i(2q“)r
0 q=0

q=
collecting e~ *&™ in the second term and letting 24 = _9_
g g N = N2
N/2-1 N/2—1
_2mi _2mi _2mi
= E X2q€ N/2qr+e N T E X2q+1€ N/297
q=0 q=0

We have two DFT's of length N /2, the operations count is hence
2(N/2)2 = N?/2, but we have to combine these two halves in the full
DFT.
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Alternative 2

Say that
27mi

X, =E, +e NTO,

where E,. and O, are the even and odd half-DFT'’s, of which we
computed only coefficients from 0 to N/2 — 1.
To get the full sequence we have to note that

1. the E and O DFT's are periodic with period N/2, and
2. exp(—2mi(r + N/2)/N) = e ™ exp(—2mir/N) = — exp(—27mir/N),

so that we can write

X. — E. + exp(—2mir/N)O, if r<N/2,
" Erny2 — exp(—2mir/N)Opn o if T N/2.

The algorithm that was outlined can be applied to the computation of
each of the half-DFT's when N/2 were even, so that the operation
count goes to N2/4. If N/4 were even ...
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Pseudocode for CT algorithm SDOF linear

oscillator
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Fourier Transform

The Discrete
def fft2(X , N) : Fourier Transform
The Fast Fourier
if N = 1 then Transform
Y = X i s it o
else
YO = ££ft2(X0, N/2)
Y1 = £ft2(X1, N/2)
for k = 0 to N/2-1
Y'k = YOk + exp(2 pi i k/N) Y1k
Y' (k+N/2) = YO'k - exp(2 pi i k/N) Yi'k
endfor
endif

return Y



Dynamic Response (1)

To evaluate the dynamic response of a linear SDOF system in the
frequency domain, ise the inverse DFT,

2
ZV exp(i 7]'[\]rs], s=0,1,...,N—1

=0
where V. = H,. P,.. P, are the discrete complex amplitude coefficients

computed using the direct DFT, and H, is the discretization of the
complex frequency response function, that for viscous damping is

1 1 u—ﬁ)—uxs)} 5 @

[t |
Tk L(1=B2)+i(2¢B) ] Kk [(1—B2)2+ (20B,)?

while for hysteretic damping is
}1:;{ }ZE{H—BJ—NXW
Tk [(1-B)+i20)] Kk [(1-B22+(202]

Wy
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you think it is the value of 339? If you are thinking

B30 =30Aw/w, =30/3.5 =~ 8.57 you're wrong!



Some words of caution

If you're going to approach the application of the complex
frequency response function without proper concern, you're
likely to be hurt.

Let's say Aw =1.0, N =32, w, = 3.5 and r = 30, what do
you think it is the value of 3397 If you are thinking

B30 =30Aw/w, =30/3.5 =~ 8.57 you're wrong!

TAW r<N/2

(r—N)Aw r>N/2’

note that in the upper part of the DFT the coefficients
correspond to negative frequencies and, staying within our
example, it is f3g = (30 —32) x 1/3.5 =~ —0.571.

If N is even, Py /2 is the coefficient corresponding to the
Nyquist frequency, if N is odd P¥ corresponds to the

Due to aliasing, w; =

largest positive frequency, while Pny1 corresponds to the
2
largest negative frequency.
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Transfer Functions

The response of a linear SDOF system to arbitrary loading
can be evaluated by a convolution integral in the time
domain,

t

x(t) = J p(t) h(t —T) dT,
0

with the unit impulse response function

h(t) = mi)D exp(—Cwnt) sin(wpt), or through the

frequency domain using the Fourier integral

x(t) = J+Oo H(w)P(w) exp(iwt) dw,

—0o0

where H(w) is the complex frequency response function.
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Transfer Functions

These response functions, or transfer functions, are

connected by the direct and inverse Fourier transforms:

+oo

H(w) = J h(t) exp(—iwt) dt,
Ioo +oo

h(t) = 27'(J H(w) exp(iwt) dw.

—00

SDOF linear
oscillator

Giacomo Boffi

Fourier Transform

The Discrete
Fourier Transform

The Fast Fourier
Transform

The Fast Fourier Transform



Relationship of transfer functions

We write the response and its Fourier transform:

x(t) = Ep(’r)h(t —1)dt = Jt p(t)h(t—T)dT

+o0 t

X(w) = J U p(T)h(t—1) dT} exp(—iwt) dt
—0o0 —00

the lower limit of integration in the first equation was

changed from 0 to —oco because p(t) =0 for T < 0, and

since h(t — 1) = 0 for T > t, the upper limit of the second

integral in the second equation can be changed from t to

+s r+s
X(w) = lim J J p(T)h(t — 7) exp(—iwt) dtdt

—S
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Fourier Transform

Introducing a new variable 6 =t — T we have The Discrete

Fourier Transform

+s—T The Fast Fourier

+s
X(w) = lim J p(T) exp(—iwT) dTJ h(8) exp(—iw®) dg. e

The Fast Fourier Transform
S—00
—S —S—T

with lim s —T = oo, we finally have
S—00

“+00

+o00
X(w) = J p(T) exp(—iwT) dTJ h(0) exp(—iw0) dO

—00 —00

= P(w) J+Oo h(0) exp(—iw0) dO

—00

where we have recognized that the first integral is the
Fourier transform of p(t).



Relationship of transfer functions

Our last relation was
+o00
X(w) = P(w)J h(0) exp(—iw0) dO

but X(w) = H(w)P(w), so that, noting that in the above
equation the last integral is just the Fourier transform of
h(08), we may conclude that, effectively, H(w) and h(t)
form a Fourier transform pair.
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SDOF linear

from cmath import exp, pi oscillator
def d_fft(x,n): Giacomo Boffi
"""Direct fft of x, a list of n=2x+*m complex values”"”

return _fft(x,n,[exp(—2xpixljxk/n) for k in range(n/2)]) Fourier Transform
def i_fft(x,n): The_Discrete
"""Inverse fft of x, a list of n=2xxm complex values""" Fourier Transform

return [x/n for x in _fft(x,n,[exp(+2*«pi*ljxk/n) for k in range(n/2)])] The Fast Fourie
urier

def _fft(x, n, twiddle): fianstonn
"""Decimation in Time FFT, to be called by d_fft and i_fft. The Fast Fourier Transform
X is the signal to transform, a list of complex values
n is its length, results are undefined if n is not a power of 2

tw is a list of twiddle factors, precomputed by the caller

returns a list of complex values, to be normalized in case of an
inverse transform”"”

if n = 1: return x # bottom reached, DFT of a length 1 vec x is x

# call fft with the even and the odd coefficients in x
# the results are the so called even and odd DFT's
y-0 = _fft(x[0::2], n/2, tw[::2])
y-1 = _fft(x[1::2], n/2, tw[::2])
# assemble the partial results "in_place”:
# 1st half of full DFT is put in even DFT, 2nd half in odd DFT
for k in range(n/2):

y-O[K], y-1[k] = y-0[kl+tw[k]xy-1[k], y-0 [Kl—tw[K]xy-1[k]

# concatenate the two halves of the DFT and return to caller
return y_0O+y_1



def main():

if

"""Run some test cases
from cmath import cos, sin, pi

def testit(title, seq):
"""utility to format and print a vector and the ifft of its fft"""

I_seq = len(seq)
print "—"x5, title, "—"x5
print "\n".join ([
"%10.6f_::_%10.6f,_%10.6fj" % (a.real, t.real, t.imag)
for (a, t) in zip(seq, i_-fft(d-fft(seq, l_.seq), l_.seq))
D
length = 32

testit ("Square_wave”, [+1.04+0.0j]*(length/2) + [—1.0+0.0j]*(length/2))
testit(”"Sine_wave”, [sin((2+pixk)/length) for k in range(length)])
D

testit ("Cosine_wave”, [cos((2x*pixk)/length) for k in range(length)

--name__. = "__main__":
main ()
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