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Introductory Remarks

Consider an undamped system with two masses and two degrees of freedom.

p1(t) P2(t)

Mml}m{mzw
klook2ook3

L L

X1 X2

We can separate the two masses, single out the spring forces and, using the
D’Alembert Principle, the inertial forces and, finally. write an equation of

dynamic equilibrium for each mass.
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Introductory Remarks

Consider an undamped system with two masses and two degrees of freedom.

oG G

L L

X1 X2

We can separate the two masses, single out the spring forces and, using the
D’Alembert Principle, the inertial forces and, finally. write an equation of
dynamic equilibrium for each mass.

_P1_
k1x1<— - ‘_k2 (Xl - X2]
MiXy

miX1 + (k1 + K2)x1 — koxo = p1(t)
P2

kQ(XQ - Xl) ~~— — k,3X2

mMoXo

moXo — Koxg + (k2 + k3)xp = pa(t)
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The equation of motion of a 2DOF system

With some little rearrangement we have a system of two

linear differential equations in two variables, x1(t) and x,(t):

miX1 + (k1 + ka)x1 — koxo = p1(t),
moXo — koxg + (Ko + k3)x2 = pa(t).
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The equation of motion of a 2DOF system

Introducing the loading vector p, the vector of inertial forces
f1 and the vector of elastic forces fg,

Pl(t)} {fn} {fs 1}
= , f = ! , f = !

P {Pz(t) ! 12 > fs,2
we can write a vectorial equation of equilibrium:

fi+fs =p(t).
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fSZKX

It is possible to write the linear relationship between fs and

. T.
the vector of displacements x = {x1X2} in terms of a
matrix product.
In our example it is

ki+ky —ko

fo —
S —ko ko + k3

introducing the stiffness matrix K.

The stiffness matrix K has a number of rows equal to the
number of elastic forces, i.e., one force for each DOF and a
number of columns equal to the number of the DOF.

The stiffness matrix K is hence a square matrix K
ndofx ndof
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fi=Mx

Analogously, introducing the mass matrix M that, for our
example, is

M _ |:m1 0 :|
0 mpo
we can write
f1 = Mx.

Also the mass matrix M is a square matrix, with number of
rows and columns equal to the number of DOF's.
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Matrix Equation

Finally it is possible to write the equation of motion in matrix
format:
Mx + Kx = p(t).

Of course, we can consider the damping forces too, taking into
account the velocity vector X, introducing a damping matrix C
and writing

Mx + Cx + Kx =p(t),

however it is now more productive to keep our attention on
undamped systems.
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Properties of K

» K is symmetrical, because the elastic force that acts on
mass i due to an unit displacement of mass j, fs; = ky;
is equal to the force on mass j due to unit diplacement
of mass i, fs; = kji.
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because the strain energy is positive it follows that K is
a positive definite matrix.



Properties of M

Restricting our discussion to systems whose degrees of
freedom are the displacements of a set of discrete masses, we
have that the mass matrix is a diagonal matrix, with all its
diagonal elements greater than zero. Such a matrix is
symmetrical and definite positive, as well as the stiffness
matrix is symmetrical and definite positive.
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Properties of M

Restricting our discussion to systems whose degrees of
freedom are the displacements of a set of discrete masses, we
have that the mass matrix is a diagonal matrix, with all its
diagonal elements greater than zero. Such a matrix is
symmetrical and definite positive, as well as the stiffness
matrix is symmetrical and definite positive.

En passant, take note that the kinetic energy for a discrete
system is

1. )
T= §XTMX.
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Generalisation of previous results

The findings in the previous two slides can be generalised to
the structural matrices of generic structural systems, with
one exception.
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Generalisation of previous results

The findings in the previous two slides can be generalised to
the structural matrices of generic structural systems, with
one exception.

For a general structural system, M could be semi-definite
positive, that is for some particular displacement vector the
kinetic energy could be zero.
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The problem

Graphical statement of the problem

pt) >

my mo
kl k2
Xl X2
ki =2k, ko =k; m =2m, mp,=m;

p(t) = posin wt.

The equations of motion
myX1 + kix1 + k2 (x1 — x2) = po sin wt,

moX2 + ko (x2 —x1) = 0.
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The problem

Graphical statement of the problem

pt) >

my my
kl k2
Xl X2
ki =2k, ko =k; m =2m, mp,=m;

p(t) = posin wt.

The equations of motion
miX1 + kixy + ko (x1 —x2) = Posin wt,
moX2 + ko (x2 —x1) = 0.

... but we prefer the matrix notation ...
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The steady state solution

because using the matrix notation we can follow the same steps
we used to find the steady-state response of a SDOF system.
First, the equation of motion

2 0f. 3 -1 1] .
m{o 1]X+k[—l 1}x—po{0}smwt
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The steady state solution

because using the matrix notation we can follow the same steps
we used to find the steady-state response of a SDOF system.
First, the equation of motion

2 0f. 3 -1 1] .
m{o 1]X+k[—l 1}x—po{0}smwt

substituting x(t) = &sin wt and simplifying sin wt, dividing by k,
with w2 =k/m, B2 = w?/w3 and Ay = po/k the above equation
can be written
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The steady state solution

because using the matrix notation we can follow the same steps
we used to find the steady-state response of a SDOF system.
First, the equation of motion

2 0f. 3 -1 1] .
m{o 1]X+k[—l 1}x—po{0}smwt

substituting x(t) = &sin wt and simplifying sin wt, dividing by k,
with w2 =k/m, B2 = w?/w3 and Ay = po/k the above equation
can be written

(B ] -wls )= P27 2T ado)
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The steady state solution

because using the matrix notation we can follow the same steps
we used to find the steady-state response of a SDOF system.
First, the equation of motion

2 0f. 3 -1 1] .
m{o 1]X+k[—l 1}x—po{0}smwt

substituting x(t) = &sin wt and simplifying sin wt, dividing by k,
with w2 =k/m, B2 = w?/w3 and Ay = po/k the above equation
can be written

(B ] -wls )= P27 2T ado)

solving for &/Ag gives
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The steady state solution

because using the matrix notation we can follow the same steps
we used to find the steady-state response of a SDOF system.
First, the equation of motion

2 0f. 3 -1 1] .
m{o 1]x+k[_l 1}x—p0{0}smwt

substituting x(t) = &sin wt and simplifying sin wt, dividing by k,
with w2 =k/m, B2 = w?/w3 and Ay = po/k the above equation
can be written

(B ] -wls )= P27 2T ado)

solving for &/Ag: gives
1—p2
1

1-8> 1 1
g | 1 3-2p%\0f

A (B2-LHB2-2)  (B2-3)(p2-2)
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The solution, graphically

Normalized displacement

steady-state response for a 2 dof system, harmonic load

EllAst
€2/st == = -
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To understand the behaviour of a MDOF system, we start
writing the homogeneous equation of motion,

Mx+Kx =0.
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Homogeneous equation of motion

To understand the behaviour of a MDOF system, we start
writing the homogeneous equation of motion,

Mx +Kx =0.

The solution, in analogy with the SDOF case, can be written
in terms of a harmonic function of unknown frequency and,
using the concept of separation of variables, of a constant
vector, the so called shape vector \:

x(t) = P (A sinwt + B cos wt).
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Homogeneous equation of motion

To understand the behaviour of a MDOF system, we start
writing the homogeneous equation of motion,

Mx +Kx =0.

The solution, in analogy with the SDOF case, can be written
in terms of a harmonic function of unknown frequency and,
using the concept of separation of variables, of a constant
vector, the so called shape vector \:

x(t) = P (A sinwt + B cos wt).

Substituting in the equation of motion, we have

(K— w2M)1b(Asin wt+ Bcoswt) =0
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Eigenvalues

The previous equation must hold for every value of t, so it
can be simplified removing the time dependency:

(K—w?*M)p =0.

This is a homogeneous linear equation, with unknowns \;

and the coefficients that depends on the parameter w?.
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Eigenvalues

The previous equation must hold for every value of t, so it
can be simplified removing the time dependency:

(K—w?*M)p =0.

This is a homogeneous linear equation, with unknowns \;

and the coefficients that depends on the parameter w?.

Speaking of homogeneous systems, we know that there is
always a trivial solution, 1{p = 0, and that different non-zero
solutions are available when the determinant of the matrix of
coefficients is equal to zero,

det (K—w?M) =0
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Eigenvalues

The previous equation must hold for every value of t, so it
can be simplified removing the time dependency:

(K—w?*M)p =0.

This is a homogeneous linear equation, with unknowns \;

and the coefficients that depends on the parameter w?.

Speaking of homogeneous systems, we know that there is
always a trivial solution, 1{p = 0, and that different non-zero
solutions are available when the determinant of the matrix of
coefficients is equal to zero,

det (K—w?M) =0

The eigenvalues of the MDOF system are the values of w?
for which the above equation (the equation of frequencies) is
verified.
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Eigenvectors

For a system with N degrees of freedom the expansion of
det (K — w?M) is an algebraic polynomial of degree N in
w?, whose roots, w%, i=1,...,N are all real and greater

than zero if both K and M are positive definite matrices,

condition that is always satisfied by stable structural systems.
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Eigenvectors

For a system with N degrees of freedom the expansion of
det (K — w?M) is an algebraic polynomial of degree N in
w?, whose roots, w%, i=1,...,N are all real and greater

than zero if both K and M are positive definite matrices,

condition that is always satisfied by stable structural systems.

Substituting one of the N roots w? in the characteristic
equation,
(K—wiM)p; =0

the resulting system of N — 1 linearly independent equations
can be solved (except for a scale factor) for P, the

eigenvector corresponding to the eigenvalue w%.
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Eigenvectors

For a system with N degrees of freedom the expansion of
det (K — w?M) is an algebraic polynomial of degree N in
w?, whose roots, w%, i=1,...,N are all real and greater
than zero if both K and M are positive definite matrices,

condition that is always satisfied by stable structural systems.

Substituting one of the N roots w? in the characteristic
equation,
(K—wiM)p; =0

the resulting system of N — 1 linearly independent equations
can be solved (except for a scale factor) for P, the
eigenvector corresponding to the eigenvalue w%.

A common choice for the normalisation of the eigenvectors is
normalisation with respect to the mass matrix, P! Mp; =1
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Initial Conditions

The most general expression (the general integral) for the
displacement of a homogeneous system is

N
x(t) = Z Pi(Aisinwit + Bjcos wit).

i=1

In the general integral there are 2N unknown constants of
integration, that must be determined in terms of the initial
conditions.
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Initial Conditions

Usually the initial conditions are expressed in terms of initial
displacements and initial velocities xo and xg, so we start deriving
the expression of displacement with respect to time to obtain

N
x(t) = Z Piw;i(Ajcoswit — By sinwit)
i=1
and evaluating the displacement and velocity for t =0 it is

N N
X(O) = le’iBi = X0, X(O) = le’iwiAi = Xg.
i=1

i=1
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Usually the initial conditions are expressed in terms of initial
displacements and initial velocities xo and xg, so we start deriving Introductory
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the expression of displacement with respect to time to obtain
The
Homogeneous
N Problem
x(t) = E Piw;i(Ajcoswit — By sinwit) =S
i=1

Equation of
Motion

Eigenvalues and
Eigenvectors
Eigenvectors are
Orthogonal

and evaluating the displacement and velocity for t =0 it is

Modal Analysis

N N
x(0) = le’iBi = Xo, x(0) = le’iwi/\i = Xo. Semrls
i-1

i=1
The above equations are vector equations, each one corresponding

to a system of N equations, so we can compute the 2N constants
of integration solving the 2N equations

N N
le)jiBi:Xo,j, le)jiwiAi:Xo,j' j=1,....N.
i-1 im1
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Orthogonality - 1 Geneaties
Giacomo Boffi

Introductory

Take into consideration two distinct eigenvalues, w? and w2,  Remarks
and write the characteristic equation for each eigenvalue: i
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PIKP, = wipI M1,
Yl K = wih Mg



Orthogonality - 2

The term P! K1, is a scalar, hence

-
YKy = (W Kpr) =K s
but K is symmetrical, KT = K and we have

YK, =P K.

By a similar derivation

YIMYP, =PI M.
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Orthogonality - 3

Substituting our last identities in the previous equations, we
have

Y Kps = wih, M,
P K = wip, M

subtracting member by member we find that

(W} — wi) Yy Mps =0
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Orthogonality - 3

Substituting our last identities in the previous equations, we
have

YK = 0t M

Y Kbs = wihy Mg
subtracting member by member we find that

(wF = w3) Y M =0

We started with the hypothesis that w? # w?, so for every
T £ s we have that the corresponding eigenvectors are
orthogonal with respect to the mass matrix

P Mg =0, for r # s.
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Orthogonality - 4

The eigenvectors are orthogonal also with respect to the
stiffness matrix:

PIKY, = 2PIMyp, =0, forr#s.

By definition
Mi = h{ M

and
P Kpi = WM.
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Eigenvectors are a base

The eigenvectors are linearly independent, so for every vector

N
x=) bjq;.
j=1

The coefficients are readily given by premultiplication of x by

X we can write

1l)iTM, because

N
YiMx =) PpIMpjg; = h{ Mpiqi = Mig;

j=1

in virtue of the ortogonality of the eigenvectors with respect
to the mass matrix, and the above relationship gives

qj

1|)].TMx

M;
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Eigenvectors are a base

Generalising our results for the displacement vector to the
acceleration vector, we can write

N N

x(t) =) jq;(t), X(t) =) g;(t),
j=1 j=1
JN JN

xi(t) = Z‘Pij%‘(t)v Xi(t) = le)ijq'j(t)-
j=1 j=1

Introducing q(t), the vector of modal coordinates and ¥, the
eigenvector matrix, whose columns are the eigenvectors,

x(t) = ¥ q(), (1) =walv.
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EoM in Modal Coordinates...

Substituting the last two equations in the equation of motion,
MY q+KW¥q=np(t)
premultiplying by WT
YTMYG+Y KYq=¥Tp(t)
introducing the so called starred matrices we can finally write

M* 4+ K q = p*(t)
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are N independent equations!

We must examine the structure of the starred symbols.
The generic element, with indexes i and j, of the starred

matrices can be expressed in terms of single eigenvectors,

M =P Mp; = 5yMy,
K5 =i Kipj = wisyM.

where 85 is the Kroneker symbol,

o 1 i=j
5”{0 1]
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are N |ndependent equatlonsl Generalized

SDOF's

Giacomo Boffi

We must examine the structure of the starred symbols. o
. . . . . ntroductory
The generic element, with indexes i and j, of the starred

Remarks

matrices can be expressed in terms of single eigenvectors, The
Homogeneous
Problem
Mt] == 1’).—LI—M1I)J - 61) Mi, Modal Analysis
Eigenvectors are a
*x T I 2¢ .. 3 base

EoM jn Modal
Coordinates

Initial Conditions
where 85 is the Kroneker symbol,

Examples
1 i=j

Fy—

Yoo i#j

Substituting in the equation of motion, with p* =PI p(t)
we have a set of uncoupled equations

Midi + w?Miqy = pr(t), i=1,....N



Initial Conditions Revisited Generalized

SDOF's
Giacomo Boffi

The initial displacements can be written in modal

Introductory
coordinates, Remarks
XO - w qo -I'I;:fnogeneous
and premultiplying both members by ¥TM we have the Froblem _
following relationship: Modal Analysis

Eigenvectors are a
ase

Y Mxg=¥Y"MV¥qy = M* EoM in Modal
0= qo = qo.

Initial Conditions

Premultiplying by the inverse of M* and taking into account
that M* is diagonal,

_ TMx
do= (M)W Mxo = qio= %
and, analogously,

qio = M,
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kl k2

p(t) Modal Analysis

Examples
X1 X2

kl = k, k2 = 2k, mp = 2m, mo =m,
p(t) = posin wt.

X1 . 0 .
X = {Xz}' plt) = {Po} sin wt,

20 3 -2
Monf2 o 2



The equation of frequencies is

Ik~ wm| |

3k — 2w?m
—2k

—2k
2k — w?m
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The equation of frequencies is

Ik~ wm| |

3k — 2w?m -2k

-2k 2k — w? mH

Developing the determinant

(2m?)w?* —

(7mk)w? + (2k?)w°

=0
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Generalized

Equation of frequencies SDOF's

Giacomo Boffi

The equation of frequencies is Introductory
emarks
The
3k - 2w2m _2k Homogeneous
HK_(.U2MH == H . Problem

-2k 2k — w?m

Modal Analysis

Examples
2 DOF System

Developing the determinant

(2m?)w* — (Tmk)w? + (2k?)w?® =0

Solving the algebraic equation in w?
> k7—+v33 > kT7++33
wi=——""— wy; = ———
m 4 m 4

k k
w? = 0.31386— w3 =3.18614—
m m
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Substituting w? for w? in the first of the characteristic Inzroductory
equations gives the ratio between the components of the first
eigenvector, E::orgﬁegr:nems

Modal Analysis

k(3—2x0.31386)11 — 2kpp; =0

Examples
2 DOF System

while substituting w3 gives

k(3 —2 x 3.18614) 1 — 2kiay = 0.



Generalized

Eigenvectors SDOF's

Giacomo Boffi

Substituting w? for w? in the first of the characteristic Inzroductory
equations gives the ratio between the components of the first
eigenvector, E:orgfzgr:neou

Modal Analysis

k(3—2x0.31386)11 — 2kpp; =0

Examples
2 DOF System

while substituting w3 gives
k(3 — 2 x 3.18614) 15 — 2Ky = 0.

Solving with the arbitrary assignment {21 = Ppp = 1 gives

the unnormalized eigenvectors,

"y — 10.84307 by — —0.59307
1= Y+1.00000(" *2~ 1 +1.00000(
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We compute first M; and M,,

Introductory
T Remarks
M; = 11)1 M, .

Homogeneous

— {0.84307, 1}|>™ 0] [0:84307 i

0 m 1

Modal Analysis

— {1.68614m, m} {0'84307} —2.42153m Examples
1 2 DOF System

M, =1.70346m

the adimensional normalisation factors are

x; = V2.42153, xp; = V1.70346.

Applying the normalisation factors to the respective unnormalised
eigenvectors and collecting them in a matrix, we have the matrix of
normalized eigenvectors

_ |+0.54177 —0.45440

= +0.64262 +0.76618
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The modal loading is

Modal Analysis
p*(t) = WT p(t) Examples

_ . [0-54177 +0.64262] foY .
— PO | 045440 +0.76618| |1

L [+06a262)
=P0 9\ 4076618
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Giacomo Boffi

Introductor
Substituting its modal expansion for x into the equation of Remarks
. . . T .
motion and premultiplying by W' we have the uncoupled T eeneous
modal equation of motion Problem
Modal Analysis
mih + 0.31386k q1 == +0.64262 Po sin wt szaDn;F::lis
méo + 3.18614k qo = +0.76618 po sin wt

Note that all the terms are dimensionally correct. Dividing by
m both equations, we have

G1 + w3qp = +0.64262 p— sin wt

Go + w3 = +0.76618 % sin wt



Particular Integral

We set )
& =Cisinwt, &=—w?Cysinwt
and substitute in the first modal EoM:

*

Cy (w% — w2) sinwt = % sin wt

solving for C;
pr_ 1
Ci=———
T mw? — w2

with w? = K;/m = m=K;/w?:

* 2 1 *
=Pl T Al with AL = PL = 204752 and By =

T K w? —w? *1-p? T K

of course

1 *
Co =A% with AY = P2 — 02404 and g, = &
k Wy

st 1_5% 7K2
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Generalized

Integra |S SDOF's

. . Giacomo Boffi
The integrals, for our loading, are thus

sinwt e
qi(t) = Agsinw;it + By cosw1t+Ast 3
1- Bl The
. sin wt Homogeneous
qz2(t) = Ay sin wyt + By cos wat + Aif] 1 3 Problem
- 62 Modal Analysis
for a system initially at rest Examples
2 DOF System
1 ) .
qi(t) :Ag) 5 (sinwt — By sinw;t)
1-B1
2 1 : :
q2(t) = Ag e (sin wt — By sin wot)
— P2

we are interested in structural degrees of freedom, too... disregarding
transient

AlY AP\ 1.10926  0.109271 .
x1(t) = <U)11 +12 _t > smwt:(l_Bi “1op )p—kosmwt

— B3 B3

AV AP\ 1.31575  0.184245 _
x2(t) = <1|)21 -i-11)2217t2 smwt:(liﬁ% + - B2 )p—kosmwt

— B P2



The response in modal coordinates CITEE

Giacomo Boffi

To have a feeling of the response in modal coordinates, let's say
that the frequency of the load is w = 2wy. Introductory

Remarks

This implies that 1= m = 6.37226 and e
_ w —
Br= & = 35507 = 0. 62771 Homogencous
2.5 Modal Analysis
. ‘ ‘ :
2 - ql(a)/ASt N Q2( 2/Ast -—=- - Examples
1.5 2 DOF System
1
S‘“ 0.5
& 0
-0.5
-1
-1.5
-2
0 5 10 15 20 25 30
oa=wWwet

In the graph above, the responses are plotted against an
adimensional time coordinate o with & = wgt, while the ordinates
are adimensionalised with respect to Ay = 12



The response in structural coordinates

Using the same normalisation factors, here are the response
functions in terms of x; =111q1 +P12q2 and
X2 = P21q1 +Po2(o:

2.5 \ \
2 Xl((X)/ASt
15
1
0.5
0
-0.5
-1
-1.5

Xi/Ast

-2
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