Matrix Iteration

Giacomo Boffi

Dipartimento di Ingegneria Strutturale, Politecnico di Milano

May 11, 2011

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Outline

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods Rayleigh-Ritz Method

Subspace Iteration

Introduction

Fundamental Mode Analysis

Second Mode Analysis Higher Modes

Inverse Iteration

Matrix Iteration

Rayleigh Methods

Subspace Iteration

We have a procedure for dynamic analysis of *MDOF* systems based on modal superposition that is both simple and efficient, simple because the modal response can be easily computed with the most advantageous technique that is available for *SDOF* systems, efficient because usually (we will return on this) only the modal responses of a few lower modes are required to accurately describe the structural response.

As the structural matrices are easily assembled using the *FEM*, our modal superposition procedure is ready to be applied to structures with tenth, thousands or millions of *DOF*'s! except that we can compute the eigenpairs only when the analyzed structure has two, three or maybe four degrees of freedom...

Enter the various Matrix Iterations procedures

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

We have a procedure for dynamic analysis of *MDOF* systems based on modal superposition that is both simple and efficient, simple because the modal response can be easily computed with the most advantageous technique that is available for *SDOF* systems, efficient because usually (we will return on this) only the modal responses of a few lower modes are required to accurately describe the structural response.

As the structural matrices are easily assembled using the *FEM*, our modal superposition procedure is ready to be applied to structures with tenth, thousands or millions of *DOF*'s! except that we can compute the eigenpairs only when the analyzed structure has two, three or maybe four degrees of freedom...

Enter the various Matrix Iterations procedures

Introduction

Fundamental Mode Analysis

Second Mode Analysis Higher Modes

Inverse Iteration

Matrix Iteration

Rayleigh Methods

Subspace Iteration

We have a procedure for dynamic analysis of *MDOF* systems based on modal superposition that is both simple and efficient, simple because the modal response can be easily computed with the most advantageous technique that is available for *SDOF* systems, efficient because usually (we will return on this) only the modal responses of a few lower modes are required to accurately describe the structural response.

As the structural matrices are easily assembled using the *FEM*, our modal superposition procedure is ready to be applied to structures with tenth, thousands or millions of *DOF*'s! except that we can compute the eigenpairs only when the analyzed structure has two, three or maybe four degrees of freedom...

Enter the various Matrix Iterations procedures!

Second Mode Analysis Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

First, we will see an iterative procedure whose outputs are the first, or fundamental, mode shape vector and the corresponding eigenvalue.

When an undamped system freely vibrates, the equation of motion is

$$K\psi_{\mathfrak{i}}=\omega_{\mathfrak{i}}^{2}M\psi_{\mathfrak{i}}.$$

In equilibrium terms, the elastic forces are equal to the inertial forces when the systems oscillates with frequency ω_i^2 and mode shape ψ_i

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Our iterative procedure will be based on finding a new displacement vector \mathbf{x}_{n+1} such that the elastic forces $\mathbf{f}_S = \mathbf{K} \mathbf{x}_{i+1}$ are in equilibrium with the inertial forces due to the old displacement vector \mathbf{x}_n , $\mathbf{f}_I = \omega_i^2 M \mathbf{x}_n$. In equations,

$$Kx_{n+1} = \omega_i^2 Mx_n$$
.

Premultiplying by the inverse of K and introducing the Dynamic Matrix, $D=K^{-1}M$

$$x_{n+1} = \omega_i^2 \mathbf{K}^{-1} \mathbf{M} \, x_n = \omega_i^2 \mathbf{D} \, x_n.$$

It is evident that in the generative equation above we miss a fundamental part, the square of the free vibration frequency ω_i^2 .

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis Second Mode

Analysis Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

This problem is solved considering the x_n as a sequence of *normalized* vectors and introducing the idea of an *unnormalized* new displacement vector, \hat{x}_{n+1} .

$$\hat{\mathbf{x}}_{n+1} = \mathbf{D} \mathbf{x}_n$$
,

note that we removed the explicit dependency on $\omega_{\mathfrak{i}}^2.$

The normalized vector is obtained applying to \hat{x}_{n+1} a normalizing factor, \mathfrak{F}_{n+1} ,

$$x_{n+1} = \frac{\hat{x}_{n+1}}{\mathfrak{F}_{n+1}},$$

$$\text{but} \qquad x_{n+1} = \omega_i^2 D \, x_n = \omega_i^2 \, \hat{x}_{n+1}, \quad \Rightarrow \quad \frac{1}{\mathfrak{F}} = \omega_i^2$$

If we agree that, near convergence, $x_{n+1} \approx x_n$, substituting in the previous equation we have

$$x_{n+1} \approx x_n = \omega_i^2 \, \hat{x}_{n+1} \quad \Rightarrow \quad \omega_i^2 \approx \frac{x_n}{\hat{x}_{n+1}}.$$

Of course the division of two vectors is not an option, so we want to twist it into something useful.

Matrix Iteration

This problem is solved considering the x_n as a sequence of *normalized* vectors and introducing the idea of an *unnormalized* new displacement vector, \hat{x}_{n+1} .

 $\hat{\mathbf{x}}_{n+1} = \mathbf{D}\mathbf{x}_n.$

note that we removed the explicit dependency on ω_i^2 .

The normalized vector is obtained applying to \hat{x}_{n+1} a normalizing factor, \mathfrak{F}_{n+1} ,

$$\mathbf{x}_{n+1} = \frac{\hat{\mathbf{x}}_{n+1}}{\mathfrak{F}_{n+1}}$$
,

$$\text{but} \qquad x_{n+1} = \omega_{\mathfrak{i}}^2 D \, x_n = \omega_{\mathfrak{i}}^2 \, \hat{x}_{n+1}, \quad \Rightarrow \quad \frac{1}{\mathfrak{F}} = \omega_{\mathfrak{i}}^2$$

If we agree that, near convergence, $x_{n+1} \approx x_n$, substituting in the previous equation we have

$$\mathbf{x}_{n+1} \approx \mathbf{x}_n = \mathbf{\omega}_i^2 \, \hat{\mathbf{x}}_{n+1} \quad \Rightarrow \quad \mathbf{\omega}_i^2 \approx \frac{\mathbf{x}_n}{\hat{\mathbf{x}}_{n+1}}.$$

Of course the division of two vectors is not an option, so we want to twist it into something useful.

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Matrix Iteration
Giacomo Boffi

This problem is solved considering the x_n as a sequence of *normalized* vectors and introducing the idea of an *unnormalized* new displacement vector, \hat{x}_{n+1} .

 $\hat{\mathbf{x}}_{n+1} = \mathbf{D}\mathbf{x}_n.$

note that we removed the explicit dependency on ω_i^2 .

The normalized vector is obtained applying to \hat{x}_{n+1} a normalizing factor, \mathfrak{F}_{n+1} ,

$$\mathbf{x}_{n+1} = rac{\hat{\mathbf{x}}_{n+1}}{\mathfrak{F}_{n+1}}$$
 ,

$$\text{but} \qquad x_{n+1} = \omega_{\mathfrak{i}}^2 D \, x_n = \omega_{\mathfrak{i}}^2 \, \hat{x}_{n+1}, \quad \Rightarrow \quad \frac{1}{\mathfrak{F}} = \omega_{\mathfrak{i}}^2$$

If we agree that, near convergence, $x_{n+1}\approx x_n$, substituting in the previous equation we have

$$\mathbf{x}_{n+1} \approx \mathbf{x}_n = \mathbf{\omega}_i^2 \, \hat{\mathbf{x}}_{n+1} \quad \Rightarrow \quad \mathbf{\omega}_i^2 \approx \frac{\mathbf{x}_n}{\hat{\mathbf{x}}_{n+1}}.$$

Of course the division of two vectors is not an option, so we want to twist it into something useful.

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Matrix Iteration

Introduction

Fundamental Mode Analysis

Second Mode Analysis Higher Modes

Inverse Iteration

Matrix Iteration

Rayleigh Methods

Subspace Iteration

This problem is solved considering the x_n as a sequence of *normalized* vectors and introducing the idea of an *unnormalized* new displacement vector, \hat{x}_{n+1} .

$$\hat{x}_{n+1} = D x_n$$
,

note that we removed the explicit dependency on $\omega_{\mathfrak{i}}^2.$

The normalized vector is obtained applying to $\hat{\mathbf{x}}_{n+1}$ a normalizing factor, \mathfrak{F}_{n+1} ,

$$\mathbf{x}_{n+1} = rac{\hat{\mathbf{x}}_{n+1}}{\mathfrak{F}_{n+1}}$$
 ,

$$\text{but} \qquad x_{n+1} = \omega_{i}^{2} D \, x_{n} = \omega_{i}^{2} \, \hat{x}_{n+1}, \quad \Rightarrow \quad \frac{1}{\mathfrak{F}} = \omega_{i}^{2}$$

If we agree that, near convergence, $x_{n+1}\approx x_n$, substituting in the previous equation we have

$$\mathbf{x}_{n+1} \approx \mathbf{x}_n = \mathbf{\omega}_i^2 \, \hat{\mathbf{x}}_{n+1} \quad \Rightarrow \quad \mathbf{\omega}_i^2 \approx \frac{\mathbf{x}_n}{\hat{\mathbf{x}}_{n+1}}.$$

Of course the division of two vectors is not an option, so we want to twist it into something useful.

Analysis

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

First, consider $x_n = \psi_i$: in this case, for j = 1, ..., N it is

$$x_{n,j}/\hat{x}_{n+1,j}=\omega_i^2.$$

Analogously for $x_n \neq \psi_i$ it was demonstrated that

$$\min_{j=1,\dots,N} \left\{ \frac{x_{n,j}}{\hat{x}_{n+1,j}} \right\} \leqslant \omega_i^2 \leqslant \max_{j=1,\dots,N} \left\{ \frac{x_{n,j}}{\hat{x}_{n+1,j}} \right\}.$$

A more rational approach would make reference to a proper vector norm, so using our preferred vector norm we can write

$$\omega_i^2 \approx \frac{\hat{x}_{n+1}^T M x_n}{\hat{x}_{n+1}^T M \hat{x}_{n+1}},$$

(if memory helps, this is equivalent to the R_{11} approximation, that we introduced studying Rayleigh quotient refinements).

Analysis

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

First, consider $x_n = \psi_i$: in this case, for j = 1, ..., N it is

$$x_{n,j}/\hat{x}_{n+1,j}=\omega_i^2.$$

Analogously for $x_n \neq \psi_i$ it was demonstrated that

$$\min_{j=1,\dots,N} \left\{ \frac{x_{n,j}}{\hat{x}_{n+1,j}} \right\} \leqslant \omega_i^2 \leqslant \max_{j=1,\dots,N} \left\{ \frac{x_{n,j}}{\hat{x}_{n+1,j}} \right\}.$$

A more rational approach would make reference to a proper vector norm, so using our preferred vector norm we can write

$$\omega_i^2 \approx \frac{\hat{x}_{n+1}^\mathsf{T} M x_n}{\hat{x}_{n+1}^\mathsf{T} M \hat{x}_{n+1}},$$

(if memory helps, this is equivalent to the R_{11} approximation, that we introduced studying Rayleigh quotient refinements).

First, consider $x_n = \psi_i$: in this case, for j = 1, ..., N it is

$$x_{n,j}/\hat{x}_{n+1,j}=\omega_i^2.$$

Analogously for $x_n \neq \psi_i$ it was demonstrated that

$$\min_{j=1,\dots,N} \left\{ \frac{x_{n,j}}{\hat{x}_{n+1,j}} \right\} \leqslant \omega_i^2 \leqslant \max_{j=1,\dots,N} \left\{ \frac{x_{n,j}}{\hat{x}_{n+1,j}} \right\}.$$

A more rational approach would make reference to a proper vector norm, so using our preferred vector norm we can write

$$\omega_i^2 \approx \frac{\hat{x}_{n+1}^T M x_n}{\hat{x}_{n+1}^T M \hat{x}_{n+1}},$$

(if memory helps, this is equivalent to the R_{11} approximation, that we introduced studying Rayleigh quotient refinements).

Introduction

Fundamental Mode Analysis Second Mode

Higher Modes

Analysis

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Until now we postulated that the sequence x_n converges to some, unspecified eigenvector ψ_i , now we will demonstrate that the sequence converge to the first, or fundamental mode shape,

$$\lim_{n\to\infty}x_n=\psi_1.$$

Expand x_0 in terms of eigenvectors an modal coordinates:

$$\mathbf{x}_0 = \psi_1 q_{1,0} + \psi_2 q_{2,0} + \psi_3 q_{3,0} + \cdots$$
 ,

and the inertial forces, assuming that the system is vibrating according to the fundamental frequency, are

$$\begin{split} f_{\mathrm{I},n=0} &= \omega_1^2 M \left(\psi_1 q_{1,0} + \psi_2 q_{2,0} + \psi_3 q_{3,0} + \cdots \right) \\ &= M \left(\omega_1^2 \psi_1 q_{1,0} \frac{\omega_1^2}{\omega_1^2} + \omega_2^2 \psi_2 q_{2,0} \frac{\omega_1^2}{\omega_2^2} + \cdots \right). \end{split}$$

Proof of Convergence, 2

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis Second Mode

Higher Modes

Analysis

Inverse Iteration

Matrix Iteration with Shifts

Ravleigh Methods

Subspace Iteration

The deflections due to these forces (no hat!, we have multiplied by ω_1^2) are

$$\boldsymbol{x}_{n=1} = \boldsymbol{K}^{-1} \boldsymbol{M} \left(\omega_1^2 \psi_1 q_{1,0} \frac{\omega_1^2}{\omega_1^2} + \omega_2^2 \psi_2 q_{2,0} \frac{\omega_1^2}{\omega_2^2} + \cdots \right),$$

observing that $\omega_i^2 M \psi_i = K \psi_i$, substituting and simplifying $K^{-1} K = I$,

$$\kappa_{n=1} = \left(\psi_1 q_{1,0} \frac{\omega_1^2}{\omega_1^2} + \psi_2 q_{2,0} \frac{\omega_1^2}{\omega_2^2} + \psi_3 q_{3,0} \frac{\omega_1^2}{\omega_3^2} + \cdots \right)$$

applying again this procedure

$$\mathbf{x}_{n=2} = \left(\psi_1 q_{1,0} \left(\frac{\omega_1^2}{\omega_1^2} \right)^2 + \psi_2 q_{2,0} \left(\frac{\omega_1^2}{\omega_2^2} \right)^2 + \psi_3 q_{3,0} \left(\frac{\omega_1^2}{\omega_3^2} \right)^2 + \cdots \right)$$

$$x_n = \left(\psi_1 q_{1,0} \left(\frac{\omega_1^2}{\omega_1^2}\right)^n + \psi_2 q_{2,0} \left(\frac{\omega_1^2}{\omega_2^2}\right)^n + \psi_3 q_{3,0} \left(\frac{\omega_1^2}{\omega_3^2}\right)^n + \cdots\right)$$

Proof of Convergence, 3

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

$$\underset{n\to\infty}{\lim}x_n=\psi_1q_{1,0}$$

because

$$\lim_{n\to\infty} \left(\frac{\omega_1^2}{\omega_j^2}\right)^n = \delta_{1j}$$

Consequently,

Going to the limit,

$$\lim_{n\to\infty}\frac{|\mathbf{x}_n|}{|\hat{\mathbf{x}}_n|}=\omega_1^2$$

Second Mode

Higher Modes

Analysis

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Purified Vectors

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

If we know ψ_1 and ω_1^2 from the matrix iteration procedure it is possible to compute the second eigenpair, following a slightly different procedure.

Express the initial iterate in terms of the (unknown) eigenvectors,

$$x_{n=0} = \Psi \, q_{n=0}$$

and premultiply by the (known) $\psi_1^T M$:

$$\psi_1^T M \, x_{n=0} = M_1 q_{1,n=0}$$

solving for $q_{1,n=0}$

$$q_{1,n=0} = \frac{\psi_1^T M \chi_{n=0}}{M_1}.$$

Knowing the amplitude of the 1st modal contribution to $x_{n=0}$ we can write a *purified* vector,

$$y_{n=0} = x_{n=0} - \psi_1 q_{1,n=0}$$

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

If we know ψ_1 and ω_1^2 from the matrix iteration procedure it is possible to compute the second eigenpair, following a slightly different procedure.

Express the initial iterate in terms of the (unknown) eigenvectors,

$$x_{n=0} = \Psi q_{n=0}$$

and premultiply by the (known) $\psi_1^\mathsf{T} M$:

$$\psi_1^T M x_{n=0} = M_1 q_{1,n=0}$$

solving for $q_{1,n=0}$

$$q_{1,n=0} = \frac{\psi_1^T M x_{n=0}}{M_1}.$$

Knowing the amplitude of the 1st modal contribution to $x_{n=0}$ we can write a *purified* vector,

$$y_{n=0} = x_{n=0} - \psi_1 q_{1,n=0}.$$

Purified Vectors

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

If we know ψ_1 and ω_1^2 from the matrix iteration procedure it is possible to compute the second eigenpair, following a slightly different procedure.

Express the initial iterate in terms of the (unknown) eigenvectors,

$$x_{n=0} = \Psi q_{n=0}$$

and premultiply by the (known) $\psi_1^\mathsf{T} M$:

$$\psi_1^T M x_{n=0} = M_1 q_{1,n=0}$$

solving for $q_{1,n=0}$

$$q_{1,n=0} = \frac{\psi_1^T M \, x_{n=0}}{M_1}.$$

Knowing the amplitude of the 1st modal contribution to $x_{n=0}$ we can write a *purified* vector,

$$y_{n=0} = x_{n=0} - \psi_1 q_{1,n=0}.$$

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

It is easy to demonstrate that using $y_{\,n=0}$ as our starting vector

$$\lim_{n\to\infty}y_n=\psi_2q_{2,n=0},\qquad \lim_{n\to\infty}\frac{|y_n|}{|\hat{u}_n|}=\omega_2^2.$$

because the initial amplitude of the first mode is null.

Due to numerical errors in the determination of fundamental mode and in the procedure itself, using a plain matrix iteration the procedure however converges to the 1st eigenvector, so to preserve convergence to the 2nd mode it is necessary that the iterated vector \mathbf{y}_n is purified at each step n.

Introduction

Fundamental Mode Analysis

Second Mode Analysis Higher Modes

Inverse Iteration

Matrix Iteration

Rayleigh Methods

Subspace Iteration

It is easy to demonstrate that using $y_{\,n=0}$ as our starting vector

$$\lim_{n\to\infty}y_n=\psi_2q_{2,n=0},\qquad \lim_{n\to\infty}\frac{|y_n|}{|\hat{u}_n|}=\omega_2^2.$$

because the initial amplitude of the first mode is null. Due to numerical errors in the determination of fundamental mode and in the procedure itself, using a plain matrix iteration the procedure however converges to the 1st eigenvector, so to preserve convergence to the 2nd mode it is necessary that the iterated vector \boldsymbol{y}_n is *purified* at each step n.

Second Mode Analysis

Higher Modes

Matrix Iteration

Rayleigh Methods

Subspace Iteration

The purification procedure is simple, at each step the amplitude of the 1st mode is first computed, then removed from the iterated vector \mathbf{y}_n

$$q_{1,n} = \psi_1^T M y_n / M_1$$

$$\hat{\boldsymbol{y}}_{n+1} = D\left(\boldsymbol{y}_n - \boldsymbol{\psi}_1 \boldsymbol{q}_{1,n}\right) = D\left(\boldsymbol{I} - \frac{1}{M_1} \boldsymbol{\psi}_1 \boldsymbol{\psi}_1^\mathsf{T} \boldsymbol{M}\right) \boldsymbol{y}_n$$

Introducing the sweeping matrix $S_1 = I - \frac{1}{M_1} \psi_1 \psi_1^T M$ and the modified dynamic matrix $D_2 = DS_1$, we can write

$$\hat{y}_{n+1} = DS_1y_n = D_2y_n.$$

This is known as matrix iteration with sweeps

Higher Modes

Matrix Iteration

with Shifts
Rayleigh
Methods

Subspace Iteration

The purification procedure is simple, at each step the amplitude of the 1st mode is first computed, then removed from the iterated vector \mathbf{y}_n

$$q_{1,n} = \mathbf{\psi}_1^\mathsf{T} \mathbf{M} \mathbf{y}_n / M_1$$

$$\hat{y}_{n+1} = D\left(y_n - \psi_1 q_{1,n}\right) = D\left(I - \frac{1}{M_1} \psi_1 \psi_1^\mathsf{T} M\right) y_n$$

Introducing the sweeping matrix $S_1 = I - \frac{1}{M_1} \psi_1 \psi_1^T M$ and the modified dynamic matrix $D_2 = DS_1$, we can write

$$\hat{\mathbf{y}}_{n+1} = \mathbf{D}\mathbf{S}_1\mathbf{y}_n = \mathbf{D}_2\mathbf{y}_n.$$

This is known as *matrix iteration with sweeps*

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

The purification procedure is simple, at each step the amplitude of the 1st mode is first computed, then removed from the iterated vector \mathbf{y}_n

$$q_{1,n} = \psi_1^T M y_n / M_1$$

$$\hat{y}_{n+1} = D\left(y_n - \psi_1 q_{1,n}\right) = D\left(I - \frac{1}{M_1} \psi_1 \psi_1^\mathsf{T} M\right) y_n$$

Introducing the sweeping matrix $S_1 = I - \frac{1}{M_1} \psi_1 \psi_1^T M$ and the modified dynamic matrix $D_2 = DS_1$, we can write

$$\hat{y}_{n+1} = DS_1y_n = D_2y_n.$$

This is known as *matrix iteration with sweeps*.

Third Mode

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Using again the idea of purifying the iterated vector, starting with the knowledge of the first and the second eigenpair,

$$\hat{y}_{n+1} = D (y_n - \psi_1 q_{1,n} - \psi_2 q_{2,n})$$

with $q_{n,1}$ as before and

$$q_{2,n} = \psi_2^T M y_n / M_2$$
,

substituting in the expression for the purified vector

$$\hat{y}_{n+1} = D\left(\underbrace{I - \frac{1}{M_1} \psi_1 \psi_1^\mathsf{T} M}_{S_1} - \frac{1}{M_2} \psi_2 \psi_2^\mathsf{T} M\right)$$

The conclusion is that the sweeping matrix and the modified dynamic matrix to be used to compute the 3rd eigenvector are

$$S_2 = S_1 - \frac{1}{M_2} \psi_2 \psi_2^T M, \qquad D_3 = D S_2$$

Third Mode

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Using again the idea of purifying the iterated vector, starting with the knowledge of the first and the second eigenpair,

$$\hat{y}_{n+1} = D (y_n - \psi_1 q_{1,n} - \psi_2 q_{2,n})$$

with $q_{n,1}$ as before and

$$q_{2,n} = \boldsymbol{\psi}_2^\mathsf{T} \mathbf{M} \boldsymbol{y}_n / \mathbf{M}_2$$

substituting in the expression for the purified vector

$$\hat{y}_{n+1} = D\left(\underbrace{I - \frac{1}{M_1} \psi_1 \psi_1^\mathsf{T} M}_{S_1} - \frac{1}{M_2} \psi_2 \psi_2^\mathsf{T} M\right)$$

The conclusion is that the sweeping matrix and the modified dynamic matrix to be used to compute the 3rd eigenvector are

$$\mathbf{S}_2 = \mathbf{S}_1 - \frac{1}{M_2} \mathbf{\psi}_2 \mathbf{\psi}_2^\mathsf{T} \mathbf{M}, \qquad \mathbf{D}_3 = \mathbf{D} \, \mathbf{S}_2.$$

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

The results obtained for the third mode are easily generalised. It is easy to verify that the following procedure can be used to compute all the modes.

Define $S_0 = I$, take i = 1,

1. compute the modified dynamic matrix to be used for mode i,

$$D_{\mathfrak{i}} = D \: S_{\mathfrak{i}-\mathfrak{i}}$$

- 2. compute ψ_i using the modified dynamic matrix;
- 3. compute the modal mass $M_i = \psi^T M \psi$;
- 4. compute the sweeping matrix S_i that sweeps the contributions of the first i modes from trial vectors,

$$S_{i} = S_{i-1} - \frac{1}{M_{i}} \psi_{i} \psi_{i}^{\mathsf{T}} M;$$

5. increment i, GOTO 1.

Well, we finally have a method that can be used to compute all the eigenpairs of our dynamic problems, full circle!

The results obtained for the third mode are easily generalised. It is easy to verify that the following procedure can be used to compute all the modes.

Define $S_0 = I$, take i = 1,

1. compute the modified dynamic matrix to be used for mode $\ensuremath{\textbf{i}},$

$$D_i = D S_{i-i}$$

- 2. compute ψ_i using the modified dynamic matrix;
- 3. compute the modal mass $M_i = \psi^T M \psi$;
- 4. compute the sweeping matrix S_i that sweeps the contributions of the first i modes from trial vectors,

$$S_i = S_{i-1} - \frac{1}{M_i} \psi_i \psi_i^\mathsf{T} M;$$

5. increment i, GOTO 1.

Well, we finally have a method that can be used to compute all the eigenpairs of our dynamic problems, full circle!

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

The method of matrix iteration with sweeping is not used in production because

- D is a full matrix, even if M and K are banded matrices, and the matrix product that is the essential step in every iteration is computationally onerous,
- 2. the procedure is however affected by numerical errors, so, after having demonstrated that it is possible to compute all the eigenvectors of a large problem using an iterative procedure it is time to look for different, more efficient iterative procedures.

Introduction to Inverse Iteration

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis Second Mode

Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Inverse iteration is based on the fact that the symmetric stiffness matrix has a banded structure, that is a relatively large triangular portion of the matrix is composed by zeroes (the banded structure is due to the *FEM* model that implies that in an equation of equilibrium the only non zero elastic force coefficients are due to degrees of freedom pertaining to *FE* that contains the degree of freedom for which the equilibrium is written).

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Every symmetric, banded matrix can be subjected to a so called LU decomposition, that is, for K we write

$$K = LU$$

where \boldsymbol{L} and \boldsymbol{U} are, respectively, a lower- and an upper-banded matrix.

If we denote with b the bandwidth of K, we have

$$L = \begin{bmatrix} l_{ij} \end{bmatrix} \quad \text{with } l_{ij} \equiv 0 \text{ for } \begin{cases} i < j \\ j < i-b \end{cases}$$

and

$$\label{eq:uij} \boldsymbol{U} = \begin{bmatrix} u_{ij} \end{bmatrix} \quad \text{with } u_{ij} \equiv 0 \text{ for } \begin{cases} i > j \\ j > i + b \end{cases}$$

Twice the equations?

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis Higher Modes

0

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

In this case, with $w_{
m n}=M\,x_{
m n}$, the recursion can be written

 $L U x_{n+1} = w_n$

or as a system of equations,

$$\mathbf{U} x_{n+1} = z_{n+1}$$
$$\mathbf{L} z_{n+1} = w_n$$

Apparently, we have doubled the number of unknowns, but the z_j 's can be easily computed by the procedure of back substitution.

Second Mode Analysis

Higher Modes

Matrix Iteration

Rayleigh Methods

Subspace Iteration

Temporarily dropping the $\mathfrak n$ and $\mathfrak n+1$ subscripts, we can write

$$z_1 = (w_1)/l_{11}$$

 $z_2 = (w_2 - l_{21}z_1)/l_{22}$
 $z_3 = (w_3 - l_{31}z_1 - l_{32}z_2)/l_{33}$

$$z_{j} = (w_{j} - \sum_{k=1}^{j-1} l_{jk} z_{k}) / l_{jj}$$

The x are then given by $\mathbf{U}x=z$.

write

Subspace Iteration

Temporarily dropping the n and n+1 subscripts, we can

$$z_1 = (w_1)/l_{11}$$

 $z_2 = (w_2 - l_{21}z_1)/l_{22}$

$$z_{3} = (w_{3} - l_{31}z_{1} - l_{32}z_{2})/l_{33}$$

$$3 = (w_3 - \iota_{31}z_1 - \iota_{32}z_2)/\iota_3$$

$$z_{j} = (w_{j} - \sum_{k=1}^{j-1} l_{jk} z_{k}) / l_{jj}$$

The x are then given by $\mathbf{u} x = z$.

Second Mode Analysis Higher Modes

Inverse Iteration

Matrix Iteration

Rayleigh Methods

Subspace Iteration

We have computed z by back substitution, we must solve $\mathbf{U} x = z$ but \mathbf{U} is upper triangular, so we have

$$x_{N} = (z_{N})/u_{NN}$$

$$x_{N-1} = (z_{N-1} - u_{N-1,N} z_N) / u_{N-1,N-1}$$

$$x_{N-2} = (z_{N-2} - u_{N-2,N} z_N - u_{N-2,N-1} z_{N-1}) / u_{N-2,N-2}$$

. .

$$x_{N-j} = (z_{N-j} - \sum_{k=0}^{j-1} u_{N-j,N-k} z_{N-k}) / u_{N-j,N-j},$$

For moderately large systems, the reduction in operations count given by back substitution with respect to matrix multiplication is so large that the additional cost of the *LU* decomposition is negligible.

Second Mode Analysis

Higher Modes Inverse Iteration

Matrix Iteration with Shifts

> Ravleigh Methods

Subspace Iteration

We have computed z by back substitution, we must solve $\mathbf{U}x = z$ but U is upper triangular, so we have

$$x_{N} = (z_{N})/u_{NN}$$

$$x_{N-1} = (z_{N-1} - u_{N})$$

$$x_{N-1} = (z_{N-1} - u_{N-1,N}z_N)/u_{N-1,N-1}$$

$$x_{N-2} = (z_{N-2} - u_{N-2,N}z_N - u_{N-2,N-1}z_{N-1})/u_{N-2,N-2}$$

$$= (2N-2) \quad \alpha_{N-2,N} = \alpha_{N-2,N-1} = (2N-1)/(\alpha_{N-2,N})$$

$$x_{N-j} = (z_{N-j} - \sum_{k=0}^{j-1} u_{N-j,N-k} z_{N-k}) / u_{N-j,N-j},$$

For moderately large systems, the reduction in operations count given by back substitution with respect to matrix multiplication is so large that the additional cost of the LU decomposition is negligible.

Introduction to Shifts

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Inverse iteration can be applied to each step of matrix iteration with sweeps, or to each step of a different procedure intended to compute all the eigenpairs, the *matrix iteration* with shifts.

If we write

$$\omega_i^2 = \mu + \lambda_i$$

where μ is a shift and λ_i is a shifted eigenvalue, the eigenvalue problem can be formulated as

$$\mathbf{K}\,\boldsymbol{\psi}_{i} = (\boldsymbol{\mu} + \boldsymbol{\lambda}_{i})\mathbf{M}\,\boldsymbol{\psi}_{i}$$

or

$$(\mathbf{K} - \mu \mathbf{M})\psi_{i} = \lambda_{i} \mathbf{M} \psi_{i}.$$

If we introduce a modified stiffness matrix

$$\overline{\mathbf{K}} = \mathbf{K} - \mu \mathbf{M},$$

we recognize that we have a *new* problem, that has *exactly* the same eigenvectors and *shifted* eigenvalues,

$$\overline{\mathbf{K}}\,\mathbf{\Phi}_{\mathrm{i}} = \lambda_{\mathrm{i}}\mathbf{M}\mathbf{\Phi}_{\mathrm{i}},$$

where

$$\Phi_i = \Psi_i$$
, $\lambda_i = \omega_i^2 - \mu$.

Introduction Fundamental

Mode Analysis

Higher Modes

Second Mode Analysis

Inverse Iteration Matrix Iteration with Shifts

Ravleigh Methods

Subspace Iteration

Matrix Iteration with Shifts, 2

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

with Shifts

Rayleigh Methods

Subspace Iteration

The shifted eigenproblem can be solved, e.g., by matrix iteration and the procedure will converge to the *smallest absolute value* shifted eigenvalue and to the associated eigenvector. After convergence is reached,

$$\psi_{\mathfrak{i}}=\varphi_{\mathfrak{i}},\qquad \omega_{\mathfrak{i}}^{2}=\lambda_{\mathfrak{i}}+\mu.$$

The convergence of the method can be greatly enhanced if the shift μ is updated every few steps during the iterative procedure using the current best estimate of λ_i ,

$$\lambda_{i,n+1} = \frac{\hat{x}_{n+1} M x_n}{\hat{x}_{n+1} M \hat{x}_n},$$

to improve the modified stiffness matric to be used in the following iterations,

$$\overline{K} = \overline{K} - \lambda_{i,n+1} M$$

Much thought was spent on the problem of choosing the initial shifts, so that all the eigenvectors can be computed in sequence without missing any of them.

Matrix Iteration with Shifts, 2

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

The shifted eigenproblem can be solved, e.g., by matrix iteration and the procedure will converge to the *smallest absolute value* shifted eigenvalue and to the associated eigenvector. After convergence is reached,

$$\psi_i = \phi_i, \qquad \omega_i^2 = \lambda_i + \mu.$$

The convergence of the method can be greatly enhanced if the shift μ is updated every few steps during the iterative procedure using the current best estimate of λ_i ,

$$\lambda_{i,n+1} = \frac{\hat{x}_{n+1} M \, x_n}{\hat{x}_{n+1} M \, \hat{x}_n}, \label{eq:lambda_interpolation}$$

to improve the modified stiffness matric to be used in the following iterations,

$$\overline{K}=\overline{K}-\lambda_{i,n+1}M$$

Much thought was spent on the problem of choosing the initial shifts, so that all the eigenvectors can be computed in sequence without missing any of them.

Matrix Iteration with Shifts, 2

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Matrix Iteration

Rayleigh Methods

Subspace Iteration

The shifted eigenproblem can be solved, e.g., by matrix iteration and the procedure will converge to the *smallest absolute value* shifted eigenvalue and to the associated eigenvector. After convergence is reached,

$$\psi_i = \phi_i, \qquad \omega_i^2 = \lambda_i + \mu.$$

The convergence of the method can be greatly enhanced if the shift μ is updated every few steps during the iterative procedure using the current best estimate of λ_i ,

$$\lambda_{i,n+1} = \frac{\hat{x}_{n+1} M \, x_n}{\hat{x}_{n+1} M \, \hat{x}_n}, \label{eq:lambda_interpolation}$$

to improve the modified stiffness matric to be used in the following iterations,

$$\overline{K}=\overline{K}-\lambda_{i,n+1}M$$

Much thought was spent on the problem of choosing the initial shifts, so that all the eigenvectors can be computed in sequence without missing any of them.

Rayleigh Quotient for Discrete Systems

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Rayleigh-Ritz Method

Subspace Iteration

The matrix iteration procedures are usually used in conjunction with methods derived from the Rayleigh Quotient method.

$$\mathbf{x}(t) = \mathbf{\Phi} \mathbf{Z}_0 \sin \omega t, \qquad \dot{\mathbf{x}}(t) = \mathbf{\omega} \mathbf{\Phi} \mathbf{Z}_0 \cos \omega t,$$

$$\mathbf{z}^{\mathrm{T}} = \mathbf{w}^2 \mathbf{\Phi}^{\mathrm{T}} \mathbf{M} \mathbf{\Phi} \qquad \mathbf{z}^{\mathrm{V}} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{K} \mathbf{\Phi}$$

$$\omega^2 = \frac{\varphi^T K \, \varphi}{\varphi^T M \, \varphi} = \frac{k^\star}{\mathfrak{m}^\star},$$

Rayleigh Quotient for Discrete Systems

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

with Shifts Rayleigh

Methods Rayleigh-Ritz

Subspace

Subspace Iteration

The matrix iteration procedures are usually used in conjunction with methods derived from the Rayleigh Quotient method.

The Rayleigh Quotient method was introduced using distributed flexibilty systems and an assumed shape function, but we have seen also an example where the Rayleigh Quotient was computed for a discrete system using an assumed shape vector.

The procedure to be used for discrete systems can be summarized a

$$x(t) = \varphi Z_0 \sin \omega t, \qquad \dot{x}(t) = \omega \varphi Z_0 \cos \omega t,$$

$$2T_{\text{max}} = \omega^2 \Phi^{\dagger} M \Phi, \qquad 2V_{\text{max}} = \Phi^{\dagger} K \Phi$$

equating the maxima, we have

$$\omega^2 = \frac{\varphi^T K \, \varphi}{\varphi^T M \, \varphi} = \frac{k^\star}{\mathfrak{m}^\star},$$

where $oldsymbol{\Phi}$ is an assumed shape vector, not an eigenvector.

Rayleigh Quotient for Discrete Systems

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Matrix Iteration

with Shifts Rayleigh

Methods Rayleigh-Ritz

Subspace

Subspace Iteration

The matrix iteration procedures are usually used in conjunction with methods derived from the Rayleigh Quotient method.

The Rayleigh Quotient method was introduced using distributed flexibilty systems and an assumed shape function, but we have seen also an example where the Rayleigh Quotient was computed for a discrete system using an assumed shape vector.

The procedure to be used for discrete systems can be summarized as

$$\mathbf{x}(t) = \mathbf{\Phi} \mathbf{Z}_0 \sin \omega t, \qquad \dot{\mathbf{x}}(t) = \omega \mathbf{\Phi} \mathbf{Z}_0 \cos \omega t,$$

$$2\mathbf{T}_{max} = \omega^2 \mathbf{\Phi}^\mathsf{T} \mathbf{M} \mathbf{\Phi}, \qquad 2\mathbf{V}_{max} = \mathbf{\Phi}^\mathsf{T} \mathbf{K} \mathbf{\Phi},$$

equating the maxima, we have

$$\omega^2 = \frac{\boldsymbol{\varphi}^\mathsf{T} \boldsymbol{K} \, \boldsymbol{\varphi}}{\boldsymbol{\varphi}^\mathsf{T} \boldsymbol{M} \, \boldsymbol{\varphi}} = \frac{k^\star}{m^\star},$$

where $oldsymbol{\Phi}$ is an assumed shape vector, not an eigenvector.

Higher Modes

Matrix Iteration

Rayleigh Methods

Rayleigh-Ritz Method

Subspace Iteration

The matrix iteration procedures are usually used in conjunction with methods derived from the Rayleigh Quotient method.

The Rayleigh Quotient method was introduced using distributed flexibilty systems and an assumed shape function, but we have seen also an example where the Rayleigh Quotient was computed for a discrete system using an assumed shape vector.

The procedure to be used for discrete systems can be summarized as

$$\begin{split} \boldsymbol{x}(t) &= \boldsymbol{\varphi} \boldsymbol{Z}_0 \sin \omega t, & & \dot{\boldsymbol{x}}(t) = \boldsymbol{\omega} \boldsymbol{\varphi} \boldsymbol{Z}_0 \cos \omega t, \\ 2 \boldsymbol{T}_{\text{max}} &= \boldsymbol{\omega}^2 \boldsymbol{\varphi}^\mathsf{T} \boldsymbol{M} \, \boldsymbol{\varphi}, & & 2 \boldsymbol{V}_{\text{max}} &= \boldsymbol{\varphi}^\mathsf{T} \boldsymbol{K} \, \boldsymbol{\varphi}, \end{split}$$

equating the maxima, we have

$$\omega^2 = \frac{\boldsymbol{\Phi}^\mathsf{T} \mathbf{K} \, \boldsymbol{\Phi}}{\boldsymbol{\Phi}^\mathsf{T} \mathbf{M} \, \boldsymbol{\Phi}} = \frac{\mathbf{k}^*}{\mathfrak{m}^*},$$

where ϕ is an assumed shape vector, not an eigenvector.

Second Mode Analysis Higher Modes

Inverse Iteration

Matrix Iteration

Rayleigh Methods

Rayleigh-Ritz Method

Subspace Iteration

For a N DOF system, an approximation to a displacement vector \mathbf{x} can be written in terms of a set of M < N assumed shape, linearly independent vectors,

$$\Phi_i$$
, $i = 1, \ldots, M < N$

and a set of *Ritz coordinates* z_i , $i-1, \ldots, M < N$:

$$x = \sum_{i} \Phi_{i} z_{i} = \Phi z.$$

We say approximation because a linear combination of M < N vectors cannot describe every point in a N-space.

Second Mode Analysis Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods Rayleigh-Ritz

Method

Subspace Iteration

We can write the Rayleigh quotient as a function of the Ritz coordinates.

$$\omega^2(z) = \frac{z^\mathsf{T} \Phi^\mathsf{T} K \Phi z}{z^\mathsf{T} \Phi^\mathsf{T} M \Phi z} = \frac{\overline{k}(z)}{\overline{\mathfrak{m}}(z)},$$

but this is not an explicit fuction for any modal frequency... On the other hand, we have seen that frequency estimates are always greater than true frequencies, so our best estimates are the the local minima of $\omega^2(z)$, or the points where all the derivatives of $\omega^2(z)$ with respect to z_i are zero

$$\frac{\partial \omega^2(z)}{\partial z_i} = \frac{\overline{m}(z) \frac{\partial \overline{k}(z)}{\partial z_i} - \overline{k}(z) \frac{\partial \overline{m}(z)}{\partial z_i}}{(\overline{m}(z))^2} = 0, \qquad \text{for } i = 1, \dots, M < N$$

Inverse Iteration

Matrix Iteration with Shifts

Ravleigh Methods Rayleigh-Ritz

Method Subspace

Iteration

We can write the Rayleigh quotient as a function of the Ritz coordinates.

$$\omega^{2}(z) = \frac{z^{\mathsf{T}} \Phi^{\mathsf{T}} K \Phi z}{z^{\mathsf{T}} \Phi^{\mathsf{T}} M \Phi z} = \frac{\overline{k}(z)}{\overline{m}(z)},$$

but this is not an explicit fuction for any modal frequency... On the other hand, we have seen that frequency estimates are always greater than true frequencies, so our best estimates are the the local minima of $\omega^2(z)$, or the points where all the derivatives of $\omega^2(z)$ with respect to z_i are zero:

$$\frac{\partial \omega^2(z)}{\partial z_i} = \frac{\overline{\mathfrak{m}}(z) \frac{\partial \overline{k}(z)}{\partial z_i} - \overline{k}(z) \frac{\partial \overline{\mathfrak{m}}(z)}{\partial z_i}}{(\overline{\mathfrak{m}}(z))^2} = 0, \qquad \text{for } i = 1, \dots, M < N$$

Reduced Eigenproblem

Observing that

$$\overline{k}(z) = \omega^2(z)\overline{\mathfrak{m}}(z)$$

we can substitute into and simplify the preceding equation,

$$\frac{\partial \overline{k}(z)}{\partial z_i} - \omega^2(z) \frac{\partial \overline{m}(z)}{\partial z_i} = 0, \qquad \text{for } i = 1, \dots, M < N$$

With the positions

$$\overline{\mathbf{K}} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{K} \, \mathbf{\Phi}, \qquad \overline{\mathbf{M}} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{M} \, \mathbf{\Phi}$$

we hav

$$\overline{\mathbf{k}}(z) = z^{\mathsf{T}} \overline{\mathbf{K}} z = \sum_{\mathbf{i}} \sum_{\mathbf{j}} \overline{\mathbf{k}}_{\mathbf{i} \mathbf{j}} z_{\mathbf{j}} z_{\mathbf{i}}$$

and

$$rac{\partial \overline{k}(z)}{\partial z_i} = 2\sum_j \overline{k}_{ij}z_j = 2\overline{K}z$$
, and, analogously, $rac{\partial \overline{m}(z)}{\partial z_i} = 2\overline{M}z$

Substituting these results in $\frac{\partial k(z)}{\partial z_i} - \omega^2(z) \frac{\partial \overline{m}(z)}{\partial z_i} = 0$ we can write a new eigenvector problem, in the M DOF Ritz coordinates space, with reduced $M \times M$ matrices:

$$\overline{K}z - \omega^2 \overline{M}z = 0.$$

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods Rayleigh-Ritz

Rayleigh-Ritz Method

Subspace Iteration

Second Mode Analysis

Higher Modes Inverse Iteration

Matrix Iteration

with Shifts Ravleigh

Methods Rayleigh-Ritz

Observing that

$$\overline{k}(z) = \omega^2(z)\overline{m}(z)$$

we can substitute into and simplify the preceding equation.

$$\frac{\partial \overline{k}(z)}{\partial z_i} - \omega^2(z) \frac{\partial \overline{m}(z)}{\partial z_i} = 0, \qquad \text{for } i = 1, \dots, M < N$$

With the positions

$$\overline{\mathbf{K}} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{K} \mathbf{\Phi}, \qquad \overline{\mathbf{M}} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{M} \mathbf{\Phi}$$

we have

$$\overline{\mathbf{k}}(z) = z^{\mathsf{T}} \overline{\mathbf{K}} z = \sum_{\mathfrak{i}} \sum_{\mathfrak{j}} \overline{\mathbf{k}}_{\mathfrak{i}\mathfrak{j}} z_{\mathfrak{j}} z_{\mathfrak{i}},$$

and

$$\frac{\partial k(z)}{\partial z_i} = 2 \sum_j \overline{k}_{ij} z_j = 2 \overline{K} z, \text{ and, analogously, } \frac{\partial \overline{m}(z)}{\partial z_i} = 2 \overline{M} z.$$

$$\overline{K}z - \omega^2 \overline{M}z = 0.$$

Observing that

$$\overline{k}(z) = \omega^2(z)\overline{m}(z)$$

we can substitute into and simplify the preceding equation,

$$\frac{\partial \overline{k}(z)}{\partial z_i} - \omega^2(z) \frac{\partial \overline{m}(z)}{\partial z_i} = 0, \qquad \text{for } i = 1, \dots, M < N$$

With the positions

$$\overline{\mathbf{K}} = \mathbf{\Phi}^\mathsf{T} \mathbf{K} \, \mathbf{\Phi}, \qquad \overline{\mathbf{M}} = \mathbf{\Phi}^\mathsf{T} \mathbf{M} \, \mathbf{\Phi}$$

we have

$$\overline{\mathbf{k}}(z) = z^{\mathsf{T}} \overline{\mathbf{K}} z = \sum_{\mathfrak{i}} \sum_{\mathfrak{j}} \overline{\mathbf{k}}_{\mathfrak{i}\mathfrak{j}} z_{\mathfrak{j}} z_{\mathfrak{i}},$$

and

$$\frac{\partial \overline{k}(z)}{\partial z_i} = 2 \sum_j \overline{k}_{ij} z_j = 2 \overline{K} z, \text{ and, analogously, } \frac{\partial \overline{m}(z)}{\partial z_i} = 2 \overline{M} z.$$

Substituting these results in $\frac{\partial \overline{k}(z)}{\partial z_i} - \omega^2(z) \frac{\partial \overline{m}(z)}{\partial z_i} = 0$ we can write a new eigenvector problem, in the M DOF Ritz coordinates space, with reduced $M \times M$ matrices:

$$\overline{\mathbf{K}}\,\mathbf{z}-\omega^2\overline{\mathbf{M}}\,\mathbf{z}=\mathbf{0}.$$

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Matrix Iteration with Shifts

Rayleigh Methods

Rayleigh-Ritz Method

Subspace Iteration

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods Rayleigh-Ritz

Method

Subspace Iteration

After solving the reduced eigenproblem, we have a set of M eigenvalues $\overline{\omega}_i^2$ and a corresponding set of M eigenvectors \overline{z}_i . What is the relation between these results and the eigenpairs of the original problem?

The $\overline{\omega}_i^2$ clearly are approximations from above to the real eigenvalues, and if we write $\overline{\psi}_i = \Phi \overline{z}_i$ we see that, being

$$\overline{\psi}_i^T M \overline{\psi}_j = \overline{z}_i^T \underbrace{\Phi^T M \Phi}_{\overline{M}} \overline{z}_j = \overline{M}_i \delta_{ij},$$

the approximated eigenvectors $\overline{\psi}_i$ are orthogonal with respect to the structural matrices and can be used in ordinary modal superposition techniques.

A Last Question

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Methods

Rayleigh-Ritz Method

Subspace Iteration

Ravleigh

One last question: how many $\overline{\omega}_i^2$ and $\overline{\psi}_i$ are effective approximations to the true eigenpairs? Experience tells that an effective approximation is to be expected for the first M/2 eigenthings.

Block Matrix Iteration

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

with Shifts

Rayleigh Methods

Subspace Iteration

If we collect all the eigenvalues into a diagonal matrix Λ , we can write the following equation,

$K\Psi = M\Psi \Lambda$

where every matrix is a square, $N\times N$ matrix. The *Subspace Iteration* method uses a reduced set of trials vectors, packed in $N\times M$ matrix Φ_0 and applies the procedure of matrix iteration to the whole set of trial vectors at once:

$$\hat{\Phi}_1 = \mathbf{K}^{-1} \mathbf{M} \, \Phi_0.$$

We used, again, the hat notation to visualize that the iterated vectors are not normalized by the application of the unknown Λ .

Should we proceed naively down this road, though, all the columns in $\Phi_{\rm n}$ would converge to the first eigenvector, subspace iteration being only an expensive manner of applying matrix iteration without sweeps or shifts...

Block Matrix Iteration

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Matrix Iteration

with Shifts
Rayleigh
Methods

Subspace Iteration

If we collect all the eigenvalues into a diagonal matrix Λ , we can write the following equation,

$K\Psi = M\Psi\Lambda$

where every matrix is a square, $N \times N$ matrix. The Subspace Iteration method uses a reduced set of trials vectors,

packed in N \times M matrix Φ_0 and applies the procedure of matrix iteration to the whole set of trial vectors at once:

$$\hat{\Phi}_1 = \mathbf{K}^{-1} \mathbf{M} \, \Phi_0.$$

We used, again, the hat notation to visualize that the iterated vectors are not normalized by the application of the unknown Λ .

Should we proceed naively down this road, though, all the columns in Φ_n would converge to the first eigenvector, subspace iteration being only an expensive manner of applying matrix iteration without sweeps or shifts...

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

Different options that comes to mind:

- 1. force all step $\mathfrak n$ non-normalized vectors to be orthogonal with respect to M, difficult, essentially we have to solve an eigenvalue problem...
- 2. use the step n non-normalized vectors as a reduced base for the Rayleigh-Ritz procedure, solve an eigenvalue problem

$$\begin{split} \overline{K}_n &= \hat{\Phi}_n^\mathsf{T} K \, \hat{\Phi}_n = \hat{\Phi}_n^\mathsf{T} M \, \Phi_{n-1} \\ \overline{M}_n &= \hat{\Phi}_n^\mathsf{T} M \, \hat{\Phi}_n \\ \overline{K}_n \, \overline{Z}_n &= \overline{M}_n \, \overline{Z}_n \overline{\Lambda}_n \end{split}$$

whose outcome $\overline{\Lambda}_n$, \overline{Z}_n is correlated to the structural eigenvalues, and use the normalized Z_n eigenvectors as the normalized, un-hatted Φ_n .

Subspace Iteration, 2

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

The second procedure is exactly what we want: we use \overline{Z} to start an iteration that will lead to a new set of base vectors that, being computed from the equation of dynamic equilibrium, will be a *better* base for the successive estimation of the eigenvectors, a new *subspace* where the eigenvectors can be more closely approximated.

Final Considerations

Matrix Iteration

Giacomo Boffi

Introduction

Fundamental Mode Analysis

Second Mode Analysis

Higher Modes

Inverse Iteration

Matrix Iteration with Shifts

Rayleigh Methods

Subspace Iteration

The procedure converges very fast and with excellent approximation to a number of eigenvalues and eigenvector p, p=M-q where q is the number of required *guard* eigenpairs.

Experience shows that we can safely use $q = min\{p, 8\}$.