Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Dipartimento di Ingegneria Strutturale, Politecnico di Milano

May 29, 2011

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Outline

Derived Ritz Vectors

Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Re-orthogonalization Required Number of DRV Example

Numerical Integration

Introduction Constant Acceleration Wilson's Theta Method Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

1. FEM model discretization of the structural system,

2. solution of the eigenproblem,

3. integration of the uncoupled equations of motion.

The eigenproblem solution is often obtained by some variation of the Rayleigh-Ritz procedure: using Ritz coordinates and a reduced set of the resulting eigenvectors i both an efficient and an accurate way of solving the eigenproblem.

A key point in the procedure is a proper choice of the initial Ritz base Φ_0 , and it turns out that an effective set of base vectors is given by the so called Lanczos vectors, to which we associate a set of Lanczos coordinates.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example

- 1. FEM model discretization of the structural system,
- 2. solution of the eigenproblem,

3. integration of the uncoupled equations of motion

The eigenproblem solution is often obtained by some variation of the Rayleigh-Ritz procedure: using Ritz coordinates and a reduced set of the resulting eigenvectors is both an efficient and an accurate way of solving the eigenproblem.

A key point in the procedure is a proper choice of the initial Ritz base Φ_0 , and it turns out that an effective set of base vectors is given by the so called Lanczos vectors, to which we associate a set of Lanczos coordinates.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example

- 1. FEM model discretization of the structural system,
- 2. solution of the eigenproblem,
- 3. integration of the uncoupled equations of motion.

The eigenproblem solution is often obtained by some variation of the Rayleigh-Ritz procedure: using Ritz coordinates and a reduced set of the resulting eigenvectors is both an efficient and an accurate way of solving the eigenproblem.

A key point in the procedure is a proper choice of the initial Ritz base Φ_0 , and it turns out that an effective set of base vectors is given by the so called Lanczos vectors, to which we associate a set of Lanczos coordinates.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example

- 1. FEM model discretization of the structural system,
- 2. solution of the eigenproblem,
- 3. integration of the uncoupled equations of motion.

The eigenproblem solution is often obtained by some variation of the Rayleigh-Ritz procedure: using Ritz coordinates and a reduced set of the resulting eigenvectors is both an efficient and an accurate way of solving the eigenproblem.

A key point in the procedure is a proper choice of the initial Ritz base Φ_0 , and it turns out that an effective set of base vectors is given by the so called Lanczos vectors, to which we associate a set of Lanczos coordinates.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example

- 1. FEM model discretization of the structural system,
- 2. solution of the eigenproblem,
- 3. integration of the uncoupled equations of motion.

The eigenproblem solution is often obtained by some variation of the Rayleigh-Ritz procedure: using Ritz coordinates and a reduced set of the resulting eigenvectors is both an efficient and an accurate way of solving the eigenproblem.

A key point in the procedure is a proper choice of the initial Ritz base Φ_0 , and it turns out that an effective set of base vectors is given by the so called Lanczos vectors, to which we associate a set of Lanczos coordinates.

Vectors. Numerical Integration Giacomo Boffi Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example

Derived Ritz

The Lanczos vectors are obtained in a manner that is similar to matrix iteration and are constructed in such a way that each one is orthogonal to all the others.

In general, in a similar sequence (e.g., Gram-Schmidt orthogonalisation) all the vectors must be orthogonalised with respect to all prededing vectors, but in the case of Lanczos vectors it is sufficient to orthogonalise a new vector with respect to the two preceeding ones to ensure full orthogonality (at least theoretically, real life numerical errors are a different story...).

Lanczos vectors sequence was invented as a procedure to solve the eigenproblem for a large symmetrical matrix and the details of the procedure are slightly different from the application that we will see. Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example

First Vector

Our initial assumption is that the load vector can be decoupled, $p(x,t)=r\,f(t)$

1. Obtain the deflected shape ℓ_1 due to the application of the force shape vector (ℓ 's are displacements).

2. Compute the normalisation factor for the first deflected shape with respect to the mass matrix (β is a displacement).

3. Obtain the first derived Ritz vector normalising ℓ_1 such that $\phi_1^T M \phi = 1$ unit of mass (ϕ 's are adimensional).

$$\mathsf{K}\ell_1 = \mathfrak{r}$$

$$\beta_1^2 = rac{\ell_1^{\mathsf{T}} \mathcal{M} \, \ell_1}{1 \; \mathsf{unit mass}}$$

Derived Ritz Vectors. Numerical Integration Giacomo Boffi Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example Numerical Integration

$$\mathbf{\Phi}_1 = \frac{1}{\beta_1} \mathbf{\ell}_1$$

Second Vector

A load vector is computed, $r_1=1M\,\varphi_1,$ where 1 is a unit acceleration and r_1 is a vector of forces.

1. Obtain the deflected shape ℓ_2 due to the application of the force shape vector.

2. Purify the displacements ℓ_2 (α_1 is dimensionally a displacement).

3. Compute the normalisation factor.

4. Obtain the second derived Ritz vector normalising $\hat{\ell}_2$.

$$\mathsf{K}\ell_2 = \mathsf{r}_1$$

$$\begin{array}{rcl} \alpha_1 &=& \frac{\boldsymbol{\varphi}_1^{\mathsf{T}} \boldsymbol{M} \, \boldsymbol{\ell}_2}{1 \; \text{unit mass}} \\ \hat{\boldsymbol{\ell}}_2 = \boldsymbol{\ell}_2 - \alpha_1 \boldsymbol{\varphi}_1 \end{array}$$

 $\beta_2^2 = \frac{\hat{\ell}_2^\mathsf{T} \mathbf{M} \, \hat{\ell}_2}{1 \text{ unit mass}}$

$$\mathbf{\Phi}_2 = \frac{1}{\beta_2} \hat{\mathbf{\ell}}_2$$

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization Required Number of DRV Example Numerical

Integration

Third Vector

The new load vector is $\mathbf{r}_2 = 1 \mathbf{M} \, \boldsymbol{\varphi}_2$, 1 being a unit acceleration.

- 1. Obtain the deflected shape ℓ_3 .
- 2. Purify the displacements ℓ_3 where

$$\alpha_2 = \frac{\Phi_2^T M \ell_3}{1 \text{ unit mass}}$$
$$\alpha_1 = \frac{\Phi_1^T M \ell_3}{1 \text{ unit mass}} = \beta_2$$

3. Compute the normalisation factor.

4. Obtain the third derived Ritz vector normalising $\hat{\ell}_3.$

$$\beta_3^2 = \frac{\hat{\ell}_3^{\mathsf{T}} \,\mathsf{M}\,\hat{\ell}_3}{1 \;\mathsf{unit}\;\mathsf{mass}}$$

 $\hat{\boldsymbol{\ell}}_3 = \boldsymbol{\ell}_3 - \boldsymbol{\alpha}_2 \boldsymbol{\Phi}_2 - \boldsymbol{\beta}_2 \boldsymbol{\Phi}_1$

$$\mathbf{\phi}_3 = \frac{1}{\beta_2} \hat{\mathbf{\ell}}_3$$

 $\mathbf{K}\boldsymbol{\ell}_{2}=\mathbf{r}_{2}$

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example Numerical

Integration

Fourth Vector, etc

The new load vector is $r_3 = 1M \varphi_3$, 1 being a unit acceleration.

- 1. Obtain the deflected shape ℓ_4 .
- 2. Purify the displacements ℓ_4 where

$$\alpha_3 = \frac{\Phi_2^T M \ell_4}{1 \text{ unit mass}}$$
$$\alpha_2 = \frac{\Phi_2^T M \ell_4}{1 \text{ unit mass}} = \beta_3$$
$$\alpha_1 = \frac{\Phi_1^T M \ell_4}{1 \text{ unit mass}} = 0$$

- 3. Compute the normalisation factor.
- 4. Obtain the fourth derived Ritz vector normalising $\hat{\ell}_4.$

The procedure used for the fourth *DRV* can be used for all the subsequent Φ_i , with $\alpha_{i-1} = \Phi_{i-1}^T M \ell_i$ and $\alpha_{i-2} \equiv \beta_{i-1}$, while all the others purifying coefficents are equal to zero, $\alpha_{i-3} = \cdots = 0$.

$$\mathbf{K} \boldsymbol{\ell}_4 = \mathbf{r}_3$$

$$\hat{\boldsymbol{\ell}}_4 = \boldsymbol{\ell}_4 - \boldsymbol{\alpha}_3 \boldsymbol{\varphi}_3 - \boldsymbol{\beta}_3 \boldsymbol{\varphi}_2$$

Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

$$\beta_4^{=} \frac{\hat{\ell}_4^{\mathsf{T}} \,\mathsf{M} \,\hat{\ell}_4}{1 \text{ unit mass}}$$

$$\Phi_4 = \frac{1}{\beta_4} \hat{\ell}_4$$

The Tridiagonal Matrix

Having computed $M < N\ DRV$ we can write for, e.g., M=5 that each un-normalised vector is equal to the displacements minus the purification terms

$$\begin{split} \varphi_2\beta_2 &= K^{-1}M\,\varphi_1 - \varphi_1\alpha_1 \\ \varphi_3\beta_3 &= K^{-1}M\,\varphi_2 - \varphi_2\alpha_2 - \varphi_1\beta_2 \\ \varphi_4\beta_4 &= K^{-1}M\,\varphi_3 - \varphi_3\alpha_3 - \varphi_2\beta_3 \\ \varphi_5\beta_5 &= K^{-1}M\,\varphi_4 - \varphi_4\alpha_4 - \varphi_3\beta_4 \end{split}$$

Collecting the φ in a matrix $\Phi,$ the above can be written

$$\mathbf{K}^{-1}\mathbf{M}\,\boldsymbol{\Phi} = \boldsymbol{\Phi} \begin{bmatrix} \alpha_1 & \beta_2 & 0 & 0 & 0\\ \beta_2 & \alpha_2 & \beta_3 & 0 & 0\\ 0 & \beta_3 & \alpha_3 & \beta_4 & 0\\ 0 & 0 & \beta_4 & \alpha_4 & \beta_5\\ 0 & 0 & 0 & \beta_5 & \alpha_5 \end{bmatrix} = \boldsymbol{\Phi}\mathbf{T}$$

where we have introduce T, a symmetric, tridiagonal matrix where $t_{i,i} = \alpha_i$ and $t_{i,i+1} = t_{i+1,i} = \beta_{i+1}$. Premultiplying by $\Phi^T M$

$$\Phi^{\mathsf{T}} \mathsf{M} \, \mathsf{K}^{-1} \mathsf{M} \, \Phi = \underbrace{\Phi^{\mathsf{T}} \mathsf{M} \, \Phi}_{\mathrm{I}} \mathsf{T} = \mathsf{T}$$

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example Numerical

Integration

Write the unknown in terms of the reduced base Φ and a vector of Ritz coordinates z, substitute in the undamped eigenvector equation, premultiply by $\Phi^T M K^{-1}$ and apply the semi-orthogonality relationship written in the previous slide.

1.
$$\omega^2 \mathbf{M} \Phi z = \mathbf{K} \Phi z$$
.
2. $\omega^2 \underbrace{\Phi^T \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \Phi}_{\mathbf{T}} z = \Phi^T \mathbf{M} \underbrace{\mathbf{K}^{-1} \mathbf{K}}_{\mathbf{I}} \Phi z$

3. $\omega^2 \mathbf{T} \ddot{z} = \mathbf{I} \mathbf{z}$.

Due to the tridiagonal structure of T, the approximate eigenvalues can be computed with very small computational effort.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example Numerical Integration

Write the equation of motion for a Rayleigh damped system, with $p(\textbf{x},t)=\textbf{r}\,f(t)$ in terms of the DRV s and Ritz coordinates z

$$\mathbf{M}\boldsymbol{\Phi}\ddot{z} + \mathbf{c}_0\mathbf{M}\boldsymbol{\Phi}\dot{z} + \mathbf{c}_1\mathbf{K}\boldsymbol{\Phi}\dot{z} + \mathbf{K}\boldsymbol{\Phi}\boldsymbol{z} = \mathbf{r}\,\mathbf{f}(\mathbf{t})$$

premultiplying by $\Phi^T M K^{-1}$, substituting T and I where appropriate, doing a series of substitutions on the right member

$$\begin{split} \mathbf{T}(\ddot{z} + \mathbf{c}_0 \dot{z}) + \mathbf{I}(\mathbf{c}_1 \dot{z} + z) &= \mathbf{\Phi}^\mathsf{T} \mathbf{M} \, \mathbf{K}^{-1} \mathbf{r} \, \mathbf{f}(t) \\ &= \mathbf{\Phi}^\mathsf{T} \mathbf{M} \boldsymbol{\ell}_1 \, \mathbf{f}(t) \\ &= \mathbf{\Phi}^\mathsf{T} \mathbf{M} \boldsymbol{\beta}_1 \mathbf{\Phi}_1 \, \mathbf{f}(t) \\ &= \boldsymbol{\beta}_1 \left\{ 1 \quad \mathbf{0} \quad \mathbf{0} \quad \cdots \quad \mathbf{0} \quad \mathbf{0} \right\}^\mathsf{T} \, \mathbf{f}(t). \end{split}$$

Using the *DRV*'s as a Ritz base, we have a set of *mildly coupled* differential equations, where external loadings directly excite the first *mode* only, and all the other *modes* are excited by inertial coupling only, with rapidly diminishing effects.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example Numerical

Integration

Modal Superposition or direct Integration?

Static effects being fully taken into account by the response of the first DRV, only a few DRV's are needed in direct integration of the equation of motion.

Furthermore special algorithms were devised for the integration of the *tridiagonal equations of motion*, that aggravate computational effort by $\approx 40\%$ only with respect to the integration of uncoupled equations.

Direct integration in Ritz coordinate is the best choice when the loading shape is complex and the loading duration is relatively short. On the other hand, in applications of earthquake engineering the loading shape is well behaved and the duration is significantly longer, so that the savings in integrating the uncoupled equations of motion outbalance the cost of the eigenvalue extraction. Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Re-

orthogonalization Required Number of DRV Example

Modal Superposition or direct Integration?

Static effects being fully taken into account by the response of the first DRV, only a few DRV's are needed in direct integration of the equation of motion.

Furthermore special algorithms were devised for the integration of the *tridiagonal equations of motion*, that aggravate computational effort by $\approx 40\%$ only with respect to the integration of uncoupled equations. Direct integration in Ritz coordinate is the best choice when the loading shape is complex and the loading duration is relatively short.

On the other hand, in applications of earthquake engineering the loading shape is well behaved and the duration is significantly longer, so that the savings in integrating the uncoupled equations of motion outbalance the cost of the eigenvalue extraction. Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Re-

orthogonalization Required Number of DRV Example

Modal Superposition or direct Integration?

Static effects being fully taken into account by the response of the first DRV, only a few DRV's are needed in direct integration of the equation of motion.

Furthermore special algorithms were devised for the integration of the *tridiagonal equations of motion*, that aggravate computational effort by $\approx 40\%$ only with respect to the integration of uncoupled equations. Direct integration in Ritz coordinate is the best choice when the loading shape is complex and the loading duration is relatively short. On the other hand, in applications of earthquake engineering the

loading shape is well behaved and the duration is significantly longer, so that the savings in integrating the uncoupled equations of motion outbalance the cost of the eigenvalue extraction. Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Re-

orthogonalization Required Number of DRV Example

Denoting with Φ_i the *i* columns matrix that collects the *DRV*'s computed, we define an ortogonality test vector

$$\boldsymbol{w}_{i} = \boldsymbol{\Phi}_{i+1}^{\mathsf{T}} \mathbf{M} \, \boldsymbol{\Phi}_{i} = \left\{ w_{1} \quad w_{2} \quad \dots \quad w_{i-1} \quad w_{i} \right\}$$

that expresses the orthogonality of the newly computed vector with respect to the previous ones. When one of the components of w_i exceeds a given tolerance, the non-exactly orthogonal ϕ_{i+1} must be subjected to a Gram-Schmidt orthogonalisation with respect to all the preceding *DRV*'s. Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example Numerical Integration

Analogously to the modal partecipation factor the Ritz partecipation factor $\hat{\Gamma}_i$ is defined

$$\hat{\Gamma}_{i} = \frac{\boldsymbol{\Phi}_{i}^{\mathsf{T}} \boldsymbol{r}}{\underbrace{\boldsymbol{\Phi}_{i}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{\Phi}_{i}}_{1}} = \boldsymbol{\Phi}_{i}^{\mathsf{T}} \boldsymbol{r}$$

(note that we divided by a unit mass).

The loading shape can be expressed as a linear combination of Ritz vector inertial forces,

$$\mathbf{r} = \sum \hat{\Gamma}_i \mathbf{M} \, \mathbf{\phi}_i.$$

The number of computed DRV's can be assumed sufficient when $\hat{\Gamma}_i$ falls below an assigned value.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization Required Number of DRV Example

Required Number of DRV

Another way to proceed: define an error vector

1

$$\hat{e}_i = r - \sum_{j=1}^i \hat{\Gamma}_j M \, \varphi_j$$

and an error norm

$$|\hat{e}_i| = rac{\mathbf{r}^{\mathsf{T}}\hat{e}_i}{\mathbf{r}^{\mathsf{T}}\mathbf{r}},$$

and stop at Φ_i when the error norm falls below a given value. BTW, an error norm can be defined for modal analysis too. Assuming normalized eigenvectors,

$$e_{i} = \mathbf{r} - \sum_{j=1}^{i} \Gamma_{j} \mathbf{M} \mathbf{\phi}_{j}, \qquad |e_{i}| = \frac{\mathbf{r}^{\mathsf{T}} e_{i}}{\mathbf{r}^{\mathsf{T}} \mathbf{r}}$$

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization Required Number of DRV Example

Error Norms, modes

7/17

In this example, we compare the error norms using modal forces and DRV forces to approximate 3 different loading shapes. The building model, on the left, used in this example is the same m that we already used in different examples. k χ_5 The structural matrices are $M = m \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ m k χ_{4} $\mathbf{K} = \mathbf{k} \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}, \ \mathbf{F} = \frac{1}{\mathbf{k}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 2 & 4 & \mathbf{k} \end{bmatrix}.$ m **χ**3 k Eigenvalues and eigenvectors matrices are: m k. χ_2 0.0000 0 0000 0.0000 0.0000 -0.0810 $\Lambda = \begin{bmatrix} 0.0000 \\ 0.0000 \\ 0.0000 \end{bmatrix}$ 0.6903 0.0000 0.0000 0.0000 m 0.0000 1.7154 0.0000 0.0000 0.0000 2.8308 0.0000 0.0000 $k | x_1$ 0.0000 0.0000 0.0000 0.0000 3.6825_ -0.4557+0.5969+0.5485 -0.3260^{-1} +0.1699 $\Psi = \begin{vmatrix} +0.3260 \\ +0.4557 \\ +0.5485 \end{vmatrix}$ $\begin{array}{r} -0.5969 \\ -0.3260 \\ +0.1699 \end{array}$ +0.1699-0.4557+0.5485-0.5485-0.1699-0.5969-0.3260+0.5969+0.4557+0.5485+0.4557-0.3260-0.1699

Error Norms, DRVs

The DRV's are computed for three different shapes of force vectors,

$$\begin{split} \mathbf{r}_{(1)} &= \left\{ \begin{matrix} 0 & 0 & 0 & 0 \end{matrix} \right. + 1 \right\}^{\mathsf{T}} \\ \mathbf{r}_{(2)} &= \left\{ \begin{matrix} 0 & 0 & 0 & -2 \end{matrix} \right. - 1 \right\}^{\mathsf{T}} \\ \mathbf{r}_{(3)} &= \left\{ \begin{matrix} 1 & 1 & 1 \end{matrix} \right. + 1 + 1 \right\}^{\mathsf{T}}. \end{split}$$

For the three force shapes, we have of course different sets of DRV's

[+0.1348]	+0.3023	+0.4529	+0.5679	+0.6023
+0.2697	+0.4966	+0.4529	+0.0406	-0.6884
$\Phi_{(1)} = +0.4045$	+0.4750	-0.1132	-0.6693	+0.3872
+0.5394	+0.1296	-0.6794	+0.4665	-0.1147
+0.6742	-0.6478	+0.3397	-0.1014	+0.0143
[−0.1601	-0.0843	+0.2442	+0.6442	+0.70197
-0.3203	-0.0773	+0.5199	+0.4317	-0.6594
$\Phi_{(2)} = -0.4804$	+0.1125	+0.5627	-0.6077	+0.2659
-0.6405	+0.5764	-0.4841	+0.1461	-0.0425
0.4804	-0.8013	-0.3451	-0.0897	-0.0035
[+0.1930]	-0.6195	+0.6779	-0.3385	+0.0694ך
+0.3474	-0.5552	-0.2489	+0.6604	-0.2701
$\Phi_{(3)} = +0.4633$	-0.1805	-0.5363	-0.3609	+0.5787
+0.5405	+0.2248	-0.0821	-0.4103	-0.6945
+0.5791	+0.4742	+0.4291	+0.3882	+0.3241

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example

	Error Norm								
	Forces $r_{(1)}$		Forces $\mathbf{r}_{(2)}$		Forces $\mathbf{r}_{(3)}$				
	modes	DRV	modes	DRV	modes	DRV			
1	0.643728	0.545454	0.949965	0.871794	0.120470	0.098360			
2	0.342844	0.125874	0.941250	0.108156	0.033292	0.012244			
3	0.135151	0.010489	0.695818	0.030495	0.009076	0.000757			
4	0.028863	0.000205	0.233867	0.001329	0.001567	0.000011			
5	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000			

Reduced Eigenproblem using DRV base

Using the same structure as in the previous example, we want to compute the first 3 eigenpairs using the first 3 DRV's computed for $\mathbf{r}=\mathbf{r}_{(3)}$ as a reduced Ritz base, with the understanding that $\mathbf{r}_{(3)}$ is a reasonable approximation to inertial forces in mode number 1. The DRV's used were printed in a previous slide, the reduced mass matrix is the unit matrix (by orthonormalisation of the DRV's), the reduced stiffness is

$$\hat{\mathbf{K}} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{K} \, \mathbf{\Phi} = \begin{bmatrix} +0.0820 & -0.0253 & +0.0093 \\ -0.0253 & +0.7548 & -0.2757 \\ +0.0093 & -0.2757 & +1.8688 \end{bmatrix}.$$

The eigenproblem, in Ritz coordinates is

$$\hat{\mathbf{K}} \boldsymbol{z} = \boldsymbol{\omega}^2 \boldsymbol{z}.$$

A comparison between *exact* solution and Ritz approximation is in the next slide.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization **Required Number** of DRV Example

Reduced Eigenproblem using DRV base, comparison

In the following, hatted matrices refer to approximate results. The eigenvalues matrices are

 $\boldsymbol{\Lambda} = \begin{bmatrix} 0.0810 & 0 & 0 \\ 0 & 0.6903 & 0 \\ 0 & 0 & 1.7154 \end{bmatrix} \text{ and } \hat{\boldsymbol{\Lambda}} = \begin{bmatrix} 0.0810 & 0 & 0 \\ 0 & 0.6911 & 0 \\ 0 & 0 & 1.9334 \end{bmatrix}.$

The eigenvectors matrices are

 $\Psi = \begin{bmatrix} +0.1699 & -0.4557 & +0.5969 \\ +0.3260 & -0.5969 & +0.1699 \\ +0.4557 & -0.3260 & -0.5485 \\ +0.5485 & +0.1699 & -0.3260 \\ +0.5969 & +0.5485 & +0.4557 \end{bmatrix} \text{ and } \hat{\Psi} = \begin{bmatrix} +0.1699 & -0.4553 & +0.8028 \\ +0.3260 & -0.6098 & -0.1130 \\ +0.4557 & -0.3150 & -0.4774 \\ +0.5485 & +0.1800 & -0.1269 \\ +0.5969 & +0.5378 & +0.3151 \end{bmatrix}$

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors Introduction Lanczos Vectors Derived Ritz Vectors Procedure by Example The Tridiagonal Matrix Solution Strategies Reorthogonalization Required Number of DRV Example

When we reviewed the numerical integration methods, we said that some methods are unconditionally stable and others are conditionally stable, that is the response *blows-out* if the time step h is great with respect to the natural preriod of vibration, $h > \frac{T_n}{a}$, where a is a constant that depends on the numerical algorithm.

For *MDOF* systems, the relevant T is the one associated with the highest mode present in the structural model, so for moderately complex structures it becomes impossibile to use a conditionally stable algorithm.

In the following, two unconditionally stable algorithms will be analysed, i.e., the constant acceleration method, thet we already know, and the new Wilson's θ method.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Introduction

Constant Acceleration Wilson's Theta Method ► The initial conditions are known:

$$egin{array}{cccc} x_0, & \dot{x}_0, & p_0, &
ightarrow & \ddot{x}_0 = M^{-1} (p_0 - C \, \dot{x}_0 - K \, x_0). \end{array}$$

• With a fixed time step h, compute the constant matrices

$$A = 2C + \frac{4}{h}M$$
, $B = 2M$, $K^+ = \frac{2}{h}C + \frac{4}{h^2}M$.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Introduction

Constant Acceleration Wilson's Theta

Method

Constant Acceleration, stepping

 Starting with i = 0, compute the effective force increment,

$$\Delta \hat{p}_{i} = p_{i+1} - p_{i} + A\dot{x}_{i} + B\ddot{x}_{i},$$

the tangent stiffness \boldsymbol{K}_{i} and the current incremental stiffness,

$$\hat{K}_{i} = K_{i} + K^{+}$$

► For linear systems, it is

$$\Delta x_{\mathfrak{i}} = \hat{\mathsf{K}}_{\mathfrak{i}}^{-1} \Delta \hat{p}_{\mathfrak{i}}$$
 ,

for a non linear system Δx_i is produced by the modified Newton-Raphson iteration procedure.

The state vectors at the end of the step are

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \Delta \mathbf{x}_i, \qquad \dot{\mathbf{x}}_{i+1} = 2\frac{\Delta \mathbf{x}_i}{h} - \dot{\mathbf{x}}_i$$

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Introduction

Constant Acceleration

Wilson's Theta Method

- Increment the step index, i = i + 1.
- Compute the accelerations using the equation of equilibrium,

$$\ddot{\mathbf{x}}_{i} = \mathbf{M}^{-1}(\mathbf{p}_{i} - \mathbf{C}\,\dot{\mathbf{x}}_{i} - \mathbf{K}\,\mathbf{x}_{i}).$$

• Repeat the substeps detailed in the previous slide.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Introduction

Constant Acceleration

Wilson's Theta Method

Modified Newton-Raphson

Initialization

$$\begin{split} y_0 = x_i & f_{\mathsf{S},0} = f_\mathsf{S}(\mathsf{system \ state}) \\ \Delta R_1 = \Delta \hat{p}_i & \mathsf{K}_\mathsf{T} = \hat{K}_i \end{split}$$

▶ For j = 1, 2, . . .

$$\begin{split} \mathbf{K}_{\mathsf{T}} \Delta \mathbf{y}_{j} &= \Delta \mathbf{R}_{1} \quad \rightarrow \quad \Delta \mathbf{y}_{j} \text{ (test for convergence)} \\ \mathbf{y}_{j} &= \mathbf{y}_{j-1} + \Delta \mathbf{y}_{j} \\ \mathbf{f}_{\mathsf{S},j} &= \mathbf{f}_{\mathsf{S}}(\text{updated system state}) \\ \Delta \mathbf{f}_{\mathsf{S},j} &= \mathbf{f}_{\mathsf{S},j} - \mathbf{f}_{\mathsf{S},j-1} - (\mathbf{K}_{\mathsf{T}} - \mathbf{K}_{i}) \Delta \mathbf{y}_{j} \\ \Delta \mathbf{R}_{j+1} &= \Delta \mathbf{R}_{j} - \Delta \mathbf{f}_{\mathsf{S},j} \end{split}$$

▶ Return the value $\Delta x_i = y_j - x_i$

A suitable convergence test is

$$\frac{\Delta \mathbf{R}_{j}^{\mathsf{T}} \Delta \mathbf{y}_{j}}{\Delta \hat{\mathbf{p}}_{i}^{\mathsf{T}} \Delta \mathbf{x}_{i,j}} \leqslant \mathsf{tol}$$

Derived Ritz Vectors, Numerical Integration Giacomo Boffi Derived Ritz Vectors Numerical Integration Introduction Constant Acceleration Wilson's Theta Method The linear acceleration method is significatly more accurate than the constant acceleration method, meaning that it is possible to use a longer time step to compute the response of a *SDOF* system within a required accuracy. On the other hand, the method is not safely applicable to *MDOF* systems due to its numerical instability. Professor Ed Wilson demonstrated that simple variations of the linear acceleration method can be made unconditionally Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

The linear acceleration method is significatly more accurate than the constant acceleration method, meaning that it is possible to use a longer time step to compute the response of a *SDOF* system within a required accuracy. On the other hand, the method is not safely applicable to *MDOF* systems due to its numerical instability. Professor Ed Wilson demonstrated that simple variations of the linear acceleration method can be made unconditionally stable and found the most accurate in this family of algorithms, collectively known as *Wilson's* θ *methods*. Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Wilson's idea is very simple: the results of the linear acceleration algorithm are *good enough* only in a fraction of the time step. Wilson demonstrated that his idea was correct, too...

The procedure is really simple,

Incremental equation of equilibrium using the linear acceleration algorithm, with an extended time ste

 $\hat{\mathrm{h}}=\mathrm{ heta}\,\mathrm{h},\qquad \mathrm{ heta}\geqslant 1,$

2. compute the extended acceleration increment $\hat{\Delta} \dot{\mathbf{x}}$ at $\hat{\mathbf{t}} = \mathbf{t}_{i} + \hat{\mathbf{h}}$.

Scale the extended acceleration increment under the assumption of linear acceleration, $\Delta \hat{\lambda} = \frac{1}{2} \Delta \hat{\lambda}$,

4. compute the velocity and displacements increment using the reduced value of the increment of acceleration. Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Wilson's idea is very simple: the results of the linear acceleration algorithm are *good enough* only in a fraction of the time step. Wilson demonstrated that his idea was correct, too...

The procedure is really simple,

1. solve the incremental equation of equilibrium using the linear acceleration algorithm, with an extended time step

$$\hat{\mathbf{h}} = \boldsymbol{\theta} \, \mathbf{h}, \qquad \boldsymbol{\theta} \geqslant \mathbf{1},$$

- 2. compute the extended acceleration increment $\hat{\Delta}\ddot{x} \text{ at } \hat{t} = t_i + \hat{h},$
- 3. scale the extended acceleration increment under the assumption of linear acceleration, $\Delta \ddot{x} = \frac{1}{\theta} \hat{\Delta} \ddot{x}$,
- compute the velocity and displacements increment using the reduced value of the increment of acceleration.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Wilson's idea is very simple: the results of the linear acceleration algorithm are *good enough* only in a fraction of the time step. Wilson demonstrated that his idea was correct, too...

The procedure is really simple,

1. solve the incremental equation of equilibrium using the linear acceleration algorithm, with an extended time step

$$\hat{\mathbf{h}} = \boldsymbol{\theta} \, \mathbf{h}, \qquad \boldsymbol{\theta} \geqslant \mathbf{1},$$

2. compute the extended acceleration increment $\hat{\Delta}\ddot{x} \text{ at } \hat{t} = t_i + \hat{h},$

- 3. scale the extended acceleration increment under the assumption of linear acceleration, $\Delta \ddot{x} = \frac{1}{\theta} \hat{\Delta} \ddot{x}$,
- 4. compute the velocity and displacements increment using the reduced value of the increment of acceleration.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Wilson's idea is very simple: the results of the linear acceleration algorithm are *good enough* only in a fraction of the time step. Wilson demonstrated that his idea was correct, too...

The procedure is really simple,

1. solve the incremental equation of equilibrium using the linear acceleration algorithm, with an extended time step

$$\hat{\mathbf{h}} = \boldsymbol{\theta} \, \mathbf{h}, \qquad \boldsymbol{\theta} \geqslant \mathbf{1},$$

- 2. compute the extended acceleration increment $\hat{\Delta}\ddot{x} \text{ at } \hat{t} = t_i + \hat{h},$
- 3. scale the extended acceleration increment under the assumption of linear acceleration, $\Delta \ddot{\mathbf{x}} = \frac{1}{\theta} \hat{\Delta} \ddot{\mathbf{x}}$,
- compute the velocity and displacements increment using the reduced value of the increment of acceleration.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Wilson's idea is very simple: the results of the linear acceleration algorithm are *good enough* only in a fraction of the time step. Wilson demonstrated that his idea was correct, too...

The procedure is really simple,

1. solve the incremental equation of equilibrium using the linear acceleration algorithm, with an extended time step

$$\hat{\mathbf{h}} = \boldsymbol{\theta} \, \mathbf{h}, \qquad \boldsymbol{\theta} \geqslant \mathbf{1},$$

- 2. compute the extended acceleration increment $\hat{\Delta}\ddot{x} \text{ at } \hat{t} = t_i + \hat{h},$
- 3. scale the extended acceleration increment under the assumption of linear acceleration, $\Delta \ddot{\mathbf{x}} = \frac{1}{\theta} \hat{\Delta} \ddot{\mathbf{x}}$,
- 4. compute the velocity and displacements increment using the reduced value of the increment of acceleration.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Using the same symbols used for constant acceleration. First of all, for given initial conditions x_0 and \dot{x}_0 , initialise the procedure computing the constants (matrices) used in the following procedure and the initial acceleration,

$$\begin{split} \ddot{x}_0 &= M^{-1}(p_0 - C\,\dot{x}_0 - K\,x_0),\\ A &= 6M/\hat{h} + 3C,\\ B &= 3M + \hat{h}C/2,\\ K^+ &= 3C/\hat{h} + 6M/\hat{h}^2. \end{split}$$

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Starting with i = 0,

1. update the tangent stiffness, $K_i = K(x, \dot{x}_i)$ and the effective stiffness, $\hat{K}_i = K_i + K^+$, compute $\hat{\Delta}\hat{p}_i = \theta \Delta p_i + A \dot{x}_i + B \ddot{x}_i$, with $\Delta p_i = p(t_i + h) - p(t_i)$

2. solve $\hat{K}_i \hat{\Delta} x = \hat{\Delta} \hat{p}_i$, compute

$$\hat{\Delta}\ddot{\mathbf{x}} = 6\frac{\dot{\Delta}\mathbf{x}}{\hat{h}^2} - 6\frac{\dot{\mathbf{x}}_i}{\hat{h}} - 3\ddot{\mathbf{x}}_i \to \Delta\ddot{\mathbf{x}} = \frac{1}{\theta}\hat{\Delta}\ddot{\mathbf{x}}$$

3. compute

$$\begin{split} \Delta \dot{\mathbf{x}} &= (\ddot{\mathbf{x}}_i + \frac{1}{2}\Delta \ddot{\mathbf{x}})\mathbf{h} \\ \Delta \mathbf{x} &= \dot{\mathbf{x}}_i\mathbf{h} + (\frac{1}{2}\ddot{\mathbf{x}}_i + \frac{1}{6}\Delta \ddot{\mathbf{x}})\mathbf{h}^2 \end{split}$$

 update state, x_{i+1} = x_i + Δx, x_{i+1} = x_i + Δẋ, i = i + 1, iterate restarting from 1. Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Starting with i = 0,

1. update the tangent stiffness, $K_i = K(x, \dot{x}_i)$ and the effective stiffness, $\hat{K}_i = K_i + K^+$, compute $\hat{\Delta}\hat{p}_i = \theta \Delta p_i + A \dot{x}_i + B \ddot{x}_i$, with $\Delta p_i = p(t_i + h) - p(t_i)$

2. solve $\hat{\mathbf{K}}_{i}\hat{\Delta}\mathbf{x} = \hat{\Delta}\hat{\mathbf{p}}_{i}$, compute

$$\hat{\Delta}\ddot{\mathbf{x}} = 6\frac{\hat{\Delta}\mathbf{x}}{\hat{h}^2} - 6\frac{\dot{\mathbf{x}}_i}{\hat{h}} - 3\ddot{\mathbf{x}}_i \rightarrow \Delta\ddot{\mathbf{x}} = \frac{1}{\theta}\hat{\Delta}\ddot{\mathbf{x}}$$

3. compute

$$\Delta \dot{\mathbf{x}} = (\ddot{\mathbf{x}}_{i} + \frac{1}{2}\Delta \ddot{\mathbf{x}})\mathbf{h}$$
$$\Delta \mathbf{x} = \dot{\mathbf{x}}_{i}\mathbf{h} + (\frac{1}{2}\ddot{\mathbf{x}}_{i} + \frac{1}{6}\Delta \ddot{\mathbf{x}})\mathbf{h}^{2}$$

update state, x_{i+1} = x_i + Δx, x_{i+1} = x_i + Δx
 i = i + 1, iterate restarting from 1.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Starting with i = 0,

1. update the tangent stiffness, $K_i = K(x, \dot{x}_i)$ and the effective stiffness, $\hat{K}_i = K_i + K^+$, compute $\hat{\Delta}\hat{p}_i = \theta \Delta p_i + A \dot{x}_i + B \ddot{x}_i$, with $\Delta p_i = p(t_i + h) - p(t_i)$

2. solve $\hat{K}_{i}\hat{\Delta}x = \hat{\Delta}\hat{p}_{i}$, compute

$$\hat{\Delta}\ddot{\mathbf{x}} = 6\frac{\hat{\Delta}\mathbf{x}}{\hat{h}^2} - 6\frac{\dot{\mathbf{x}}_i}{\hat{h}} - 3\ddot{\mathbf{x}}_i \rightarrow \Delta\ddot{\mathbf{x}} = \frac{1}{\theta}\hat{\Delta}\ddot{\mathbf{x}}$$

3. compute

$$\begin{split} \Delta \dot{\mathbf{x}} &= (\ddot{\mathbf{x}}_{i} + \frac{1}{2}\Delta \ddot{\mathbf{x}})h\\ \Delta \mathbf{x} &= \dot{\mathbf{x}}_{i}h + (\frac{1}{2}\ddot{\mathbf{x}}_{i} + \frac{1}{6}\Delta \ddot{\mathbf{x}})h^{2} \end{split}$$

update state, x_{i+1} = x_i + Δx, x_{i+1} = x_i + Δx
 i = i + 1, iterate restarting from 1.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

Starting with i = 0,

1. update the tangent stiffness, $K_i = K(x, \dot{x}_i)$ and the effective stiffness, $\hat{K}_i = K_i + K^+$, compute $\hat{\Delta}\hat{p}_i = \theta \Delta p_i + A \dot{x}_i + B \ddot{x}_i$, with $\Delta p_i = p(t_i + h) - p(t_i)$

2. solve $\hat{K}_{i}\hat{\Delta}x = \hat{\Delta}\hat{p}_{i}$, compute

$$\hat{\Delta}\ddot{\mathbf{x}} = 6\frac{\hat{\Delta}\mathbf{x}}{\hat{h}^2} - 6\frac{\dot{\mathbf{x}}_i}{\hat{h}} - 3\ddot{\mathbf{x}}_i \rightarrow \Delta\ddot{\mathbf{x}} = \frac{1}{\theta}\hat{\Delta}\ddot{\mathbf{x}}$$

3. compute

$$\begin{split} \Delta \dot{\mathbf{x}} &= (\ddot{\mathbf{x}}_{i} + \frac{1}{2}\Delta \ddot{\mathbf{x}})h\\ \Delta \mathbf{x} &= \dot{\mathbf{x}}_{i}h + (\frac{1}{2}\ddot{\mathbf{x}}_{i} + \frac{1}{6}\Delta \ddot{\mathbf{x}})h^{2} \end{split}$$

4. update state, $\mathbf{x}_{i+1} = \mathbf{x}_i + \Delta \mathbf{x}$, $\dot{\mathbf{x}}_{i+1} = \dot{\mathbf{x}}_i + \Delta \dot{\mathbf{x}}$, i = i + 1, iterate restarting from 1. Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration

The Theta Method is unconditionally stable for $\theta > 1.37$ and it achieves the maximum accuracy for $\theta = 1.42$.

Derived Ritz Vectors, Numerical Integration

Giacomo Boffi

Derived Ritz Vectors

Numerical Integration