Multiple support excitation

Giacomo Boffi

Dipartimento di Ingegneria Strutturale, Politecnico di Milano

June 1, 2011

Multiple support excitation

Giacomo Boffi

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

Consider the case of a structure where the supports are subjected to assigned displacements histories, $u_i = u_i(t)$. To solve this problem, we start with augmenting the degrees of freedom with the support displacements.

We denote the superstructure DOF with x_T , the support DOF with x_q and we have a global displacement vector x,

$$x = \left\{\begin{matrix} x_T \\ x_g \end{matrix}\right\}.$$

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

Damping effects will be introduced at the end of our manipulations.

The equation of motion is

$$\begin{bmatrix} \mathbf{M} & \mathbf{M}_g \\ \mathbf{M}_g^\mathsf{T} & \mathbf{M}_{gg} \end{bmatrix} \begin{Bmatrix} \ddot{\mathbf{x}}_\mathsf{T} \\ \ddot{\mathbf{x}}_g \end{Bmatrix} + \begin{bmatrix} \mathbf{K} & \mathbf{K}_g \\ \mathbf{K}_g^\mathsf{T} & \mathbf{K}_{gg} \end{bmatrix} \begin{Bmatrix} \mathbf{x}_\mathsf{T} \\ \mathbf{x}_g \end{Bmatrix} = \begin{Bmatrix} \mathbf{0} \\ \mathbf{p}_g \end{Bmatrix}$$

where M and K are the usual structural matrices, while M_{q} and M_{qq} are, in the common case of a lumped mass model, zero matrices.

Static Components

Multiple support excitation

Giacomo Boffi

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

We decompose the vector of displacements into two contributions, a static contribution and a dynamic contribution, attributing the *given* support displacements to the static contribution.

where x is the usual *relative displacements* vector.

Because the x_q are given, we can write two matricial equations that give us the static supertructure displacements and the forces we must apply to the supports,

$$\begin{aligned} \mathbf{K}\mathbf{x}_s + \mathbf{K}_g\mathbf{x}_g &= \mathbf{0} \\ \mathbf{K}_g^\mathsf{T}\mathbf{x}_s + \mathbf{K}_g {}_g\mathbf{x}_g &= \mathbf{p}_g \end{aligned}$$

From the first equation we have

$$\mathbf{x}_s = -\mathbf{K}^{-1}\mathbf{K}_g\mathbf{x}_g$$

and from the second we have

$$p_g = (K_{gg} - K_g^\mathsf{T} K^{-1} K_g) x_g$$

Determination of static components

From the first equation we have

and from the second we have

the structure is subjected to a rigif motion.

and the forces we must apply to the supports,

Because the x_q are given, we can write two matricial

equations that give us the static supertructure displacements

 $\mathbf{K}\mathbf{x}_{s} + \mathbf{K}_{q}\mathbf{x}_{q} = 0$

 $\boldsymbol{K}_g^T\boldsymbol{x}_s + \boldsymbol{K}_{gg}\boldsymbol{x}_g = \boldsymbol{p}_g$

 $\mathbf{x}_{s} = -\mathbf{K}^{-1}\mathbf{K}_{a}\mathbf{x}_{a}$

 $\mathbf{p}_{\mathbf{q}} = (\mathbf{K}_{\mathbf{q}\,\mathbf{q}} - \mathbf{K}_{\mathbf{q}}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{K}_{\mathbf{q}}) \mathbf{x}_{\mathbf{q}}$

The support forces are zero when the structure is isostatic or

Giacomo Boffi Definitions

Multiple support excitation

Equation of

EOM Example

Response

Analysis

Response Analysis Example

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

We need the first row of the two matrix equation of equilibrium,

$$\begin{bmatrix} M & M_g \\ M_g^\mathsf{T} & M_{gg} \end{bmatrix} \begin{Bmatrix} \ddot{x}_\mathsf{T} \\ \ddot{x}_g \end{Bmatrix} + \begin{bmatrix} K & K_g \\ K_g^\mathsf{T} & K_{gg} \end{bmatrix} \begin{Bmatrix} x_\mathsf{T} \\ x_g \end{Bmatrix} = \begin{Bmatrix} 0 \\ p_g \end{Bmatrix}$$

substituting $x_T = x_s + x$ in the first row

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{M}\ddot{\mathbf{x}}_s + \mathbf{M}_g\ddot{\mathbf{x}}_g + \mathbf{K}\mathbf{x} + \mathbf{K}\mathbf{x}_s + \mathbf{K}_g\mathbf{x}_g = \mathbf{0}$$

by the equation of static equilibrium, $\mathbf{K}\mathbf{x}_s + \mathbf{K}_g\mathbf{x}_g = \mathbf{0}$ we can simplify

$$M\ddot{x} + M\ddot{x}_s + M_g\ddot{x}_g + Kx = M\ddot{x} + (M_g - MK^{-1}K_g)\ddot{x}_g + Kx = 0.$$

Influence matrix

Multiple support excitation

Definitions

Equation of motion

EOM Example

Response Analysis Response Analysis Example

Giacomo Boffi

The equation of motion is

$$\label{eq:mean_model} \mathbf{M}\ddot{\mathbf{x}} + (\mathbf{M}_g - \mathbf{M}\mathbf{K}^{-1}\mathbf{K}_g)\ddot{\mathbf{x}}_g + \mathbf{K}\mathbf{x} = \mathbf{0}.$$

We define the influence matrix E by

$$\mathsf{E} = -\mathsf{K}^{-1}\mathsf{K}_{\mathsf{q}},$$

and write, reintroducing the damping effects,

$$\label{eq:mean_model} M\ddot{x} + C\dot{x} + Kx = -(ME + M_g)\ddot{x}_g - (CE + C_g)\dot{x}_g$$

Simplification of the EOM

Multiple support excitation

Giacomo Boffi

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

For a lumped mass model, $\mathbf{M}_g = 0$ and also the efficace forces due to damping are really small with respect to the inertial ones, and with this understanding we write

$$M\ddot{x} + C\dot{x} + Kx = -ME\ddot{x}_{q}.$$

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

E can be understood as a collection of vectors e_i , $i=1,\ldots,N_g$ (N_g being the number of *DOF* associated with the support motion),

$$E = \begin{bmatrix} e_1 & e_2 & \cdots & e_{N_q} \end{bmatrix}$$

where the individual $e_{\rm i}$ collects the displacements in all the DOF of the superstructure due to imposing a unit displacement to the support DOF number i.

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

This understanding means that the influence matrix can be computed column by column,

- ▶ in the general case by releasing one support *DOF*, applying a unit force to the released *DOF*, computing all the displacements and scaling the displacements so that the support displacement component is made equal to 1,
- ▶ or in the case of an isostatic component by examining the instantaneous motion of the 1 *DOF* rigid system that we obtain by releasing one constraint.

EOM example

Giacomo Boffi

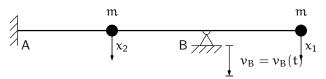
Definitions

Equation of motion

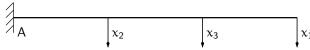
EOM Example

Response Analysis

Response Analysis Example



We want to determine the influence matrix ${\bf E}$ for the structure in the figure above, subjected to an assigned motion in ${\bf B}$.



First step, put in evidence another degree of freedom x_3 corresponding to the assigned vertical motion of the support in B and compute, using e.g. the PVD, the flexibility matrix:

$$F = \frac{L^3}{3EJ} \begin{bmatrix} 54.0000 & 8.0000 & 28.0000 \\ 8.0000 & 2.0000 & 5.0000 \\ 28.0000 & 5.0000 & 16.0000 \end{bmatrix}$$

EOM example

Multiple support excitation

The stiffness matrix is found by inversion,

$$\label{eq:K} \textbf{K} = \frac{3 E J}{13 L^3} \begin{bmatrix} +7.0000 & +12.0000 & -16.0000 \\ +12.0000 & +80.0000 & -46.0000 \\ -16.0000 & -46.0000 & +44.0000 \end{bmatrix}.$$

Equation of

Definitions

motion

Response

EOM Example

Olvi Example

Analysis Response

We are interested in the partitions $\mathbf{K}_{\chi\chi}$ and $\mathbf{K}_{\chi g}$:

$$\label{eq:Kxx} \textbf{K}_{xx} = \frac{3EJ}{13L^3} \begin{bmatrix} +7.0000 & +12.0000.0000 \\ +12.0000 & +80.0000.0000 \end{bmatrix} \text{, } \textbf{K}_{xg} = \frac{3EJ}{13L^3} \begin{bmatrix} -16 \\ -46 \end{bmatrix} \text{.}$$

Analysis Example

The influence matrix is

$$E = -K_{xx}^{-1}K_{xg} = \frac{1}{16} \begin{bmatrix} 28.0000 \\ 5.0000 \end{bmatrix} \text{,}$$

please compare E with the last column of the flexibility matrix. F.

Response analysis

$$\ddot{\mathbf{x}}_{\mathbf{q}} = {\ddot{\mathbf{x}}_{\mathbf{q}}}, \qquad \mathbf{l} = 1, \dots, N_{\mathbf{q}}$$

Consider the vector of support accelerations,

$$p_{eff} = -ME\ddot{x}_g = -\sum_{l=1}^{N_g} Me_l\ddot{x}_{gl}(t). \label{eq:peff}$$

$$n = -\sum_{n=1}^{N_g} \Gamma_{n1}\ddot{x}_{a1}(t)$$

$$\ddot{q}_n + 2\zeta_n \omega_n \dot{q}_n + \omega_n^2 q_n = -\sum_{l=1}^{N_g} \Gamma_{nl} \ddot{x}_{gl}(t)$$

where
$$\Gamma_{n\,l} = \frac{\boldsymbol{\psi}_n^\mathsf{T} \boldsymbol{M} \boldsymbol{e}_l}{\boldsymbol{M}^*}$$

Multiple support excitation Giacomo Boffi

Definitions

Equation of motion EOM Example

Response Analysis Response Analysis Example

Response analysis, continued

Multiple support excitation

Giacomo Boffi

Definitions

Equation of motion

EOM Example
Response

Analysis Response

Analysis Example

The solution $q_n(t)$ is hence, with the notation of last lesson,

$$q_n(t) = \sum_{l=1}^{N_g} \Gamma_{nl} D_{nl}(t),$$

 D_{nl} being the response function for ζ_n and ω_n due to the ground excitation \ddot{x}_{gl} .

The total displacements x_T are given by two contributions, $x_T = x_s + x$, the expression of the contributions are

$$\mathbf{x}_s = \mathbf{E}\mathbf{x}_g(\mathbf{t}) = \sum_{l=1}^{N_g} e_l \mathbf{x}_{gl}(\mathbf{t}),$$

$$x = \sum_{n=1}^{N} \sum_{l=1}^{N_g} \psi_n \Gamma_{nl} D_{nl}(t),$$

and finally we have

$$x_{T} = \sum_{l=1}^{N_{g}} e_{l} x_{gl}(t) + \sum_{n=1}^{N} \sum_{l=1}^{N_{g}} \psi_{n} \Gamma_{nl} D_{nl}(t).$$

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

For a computer program, the easiest way to compute the nodal forces is

- $\alpha)$ compute, element by element, the nodal displacements by x_T and x_g ,
- b) use the element stiffness matrix compute nodal forces,
- c) assemble element nodal loads into global nodal loads.

That said, let's see the analytical development...

Equation of motion

EOM Example Response

Definitions

Analysis

Response Analysis Example

The forces on superstructure nodes due to deformations are

$$f_s = \sum_{n=1}^{N} \sum_{l=1}^{N_g} \Gamma_{nl} K \psi_n D_{nl}(t)$$

 $f_s = \sum^{N}_{} \sum^{N_g}_{} (\Gamma_{nl} M \psi_n) (\omega_n^2 D_{nl}(t)) = \sum_{} \sum_{} r_{nl} A_{nl}(t)$ n = 11 - 1

the forces on support

$$\mathbf{f}_{gs} = \mathbf{K}_g^\mathsf{T} \mathbf{x}_\mathsf{T} + \mathbf{K}_{gg} \mathbf{x}_g = \mathbf{K}_g^\mathsf{T} \mathbf{x} + \mathbf{p}_g$$

or, using $x_s = Ex_a$

$$f_{gs} = (\sum^{N_g} K_g^T e_l + K_{gg,l}) x_{gl} + \sum^{N} \sum^{N_g} \Gamma_{nl} K_g^T \psi_n D_{nl}(t)$$

Forces

Multiple support excitation

Giacomo Boffi

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

The structure response components must be computed considering the structure loaded by all the nodal forces,

$$f = \begin{cases} f_s \\ f_{qs} \end{cases}.$$

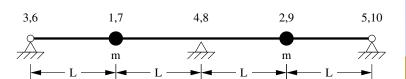
Definitions

Equation of motion

EOM Example

Response

Analysis
Response
Analysis Example



The dynamic DOF are x_1 and x_2 , vertical displacements of the two equal masses, x_3 , x_4 , x_5 are the imposed vertical displacements of the supports, x_6, \ldots, x_{10} are the rotational degrees of freedom (removed by static condensation).

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

The stiffness matrix for the 10x10 model is

$$\label{eq:K10} \boldsymbol{K}_{10\times 10} = \frac{EJ}{L^3} \begin{bmatrix} 12 & -12 & 0 & 0 & 0 & 6L & 6L & 0 & 0 & 0 \\ -12 & 24 & -12 & 0 & 0 & -6L & 0 & 6L & 0 & 0 \\ 0 & -12 & 24 & -12 & 0 & 0 & -6L & 0 & 6L & 0 \\ 0 & 0 & -12 & 24 & -12 & 0 & 0 & -6L & 0 & 6L \\ 0 & 0 & 0 & -12 & 12 & 0 & 0 & 0 & -6L & -6L \\ 6L & -6L & 0 & 0 & 0 & 4L^2 & 2L^2 & 0 & 0 & 0 \\ 6L & 0 & -6L & 0 & 0 & 2L^2 & 8L^2 & 2L^2 & 0 \\ 0 & 6L & 0 & -6L & 0 & 0 & 2L^2 & 8L^2 & 2L^2 & 0 \\ 0 & 0 & 6L & 0 & -6L & 0 & 0 & 2L^2 & 8L^2 & 2L^2 \\ 0 & 0 & 0 & 6L & -6L & 0 & 0 & 2L^2 & 4L^2 \end{bmatrix}$$

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

The first product of the static condensation procedure is the

$$\vec{\phi} = \frac{1}{56L} \begin{bmatrix} 71 & -90 & 24 & -6 & 1\\ 26 & 12 & -48 & 12 & -2\\ -7 & 42 & 0 & -42 & 7\\ 2 & -12 & 48 & -12 & -26\\ -1 & 6 & -24 & 90 & -71 \end{bmatrix} \vec{x}.$$

Example

Multiple support excitation

Giacomo Boffi

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

Following static condensation and reordering rows and columns, the partitioned stiffness matrices are

$$\begin{split} \boldsymbol{K} &= \frac{EJ}{28L^3} [\begin{smallmatrix} 276 & 108 \\ 108 & 276 \end{smallmatrix}], \\ \boldsymbol{K}_g &= \frac{EJ}{28L^3} \Big[\begin{smallmatrix} -102 & -264 & -18 \\ -18 & -264 & -102 \end{smallmatrix}], \\ \boldsymbol{K}_{gg} &= \frac{EJ}{28L^3} \Big[\begin{smallmatrix} 45 & 72 & 3 \\ 72 & 384 & 72 \\ 3 & 72 & 45 \end{smallmatrix}\Big]. \end{split}$$

The influence matrix is

$$E = K^{-1}K_g = \frac{1}{32} \begin{bmatrix} \frac{13}{32} & \frac{22}{13} \\ -3 & \frac{22}{13} & \frac{13}{3} \end{bmatrix}.$$

Example

Multiple support excitation

Giacomo Boffi

Definitions

Equation of motion

EOM Example

Analysis

Response

Response Analysis Example

The eigenvector matrix is

$$\Psi = \left[egin{array}{cc} -1 & 1 \\ 1 & 1 \end{array}
ight]$$

the matrix of modal masses is

$$\mathbf{M}^{\star} = \mathbf{\Psi}^{\mathsf{T}} \mathbf{M} \mathbf{\Psi} = \mathfrak{m} \left[\begin{smallmatrix} 2 & 0 \\ 0 & 2 \end{smallmatrix} \right]$$

the matrix of the non normalized modal partecipation coefficients is

$$L = \Psi^T M E = m \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{16} & \frac{11}{8} & \frac{5}{16} \end{bmatrix}$$

and, finally, the matrix of modal partecipation factors,

$$\Gamma = (M^{\star})^{-1}L = \begin{bmatrix} -\frac{1}{4} & 0 & \frac{1}{4} \\ \frac{5}{32} & \frac{11}{16} & \frac{5}{32} \end{bmatrix}$$

Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

Denoting with $D_{ij} = D_{ij}(t)$ the response function for mode i due to ground excitation \ddot{x}_{gj} , the response can be written

$$\begin{split} \boldsymbol{\chi} &= \begin{pmatrix} \psi_{11} \left(-\frac{1}{4} D_{11} + \frac{1}{4} D_{13} \right) + \psi_{12} \left(\frac{5}{32} D_{21} + \frac{5}{32} D_{23} + \frac{11}{16} D_{22} \right) \\ \psi_{21} \left(-\frac{1}{4} D_{11} + \frac{1}{4} D_{13} \right) + \psi_{22} \left(\frac{5}{32} D_{21} + \frac{5}{32} D_{23} + \frac{11}{16} D_{22} \right) \end{pmatrix} \\ &= \begin{pmatrix} -\frac{1}{4} D_{13} + \frac{1}{4} D_{11} + \frac{5}{32} D_{21} + \frac{5}{32} D_{23} + \frac{11}{16} D_{22} \\ -\frac{1}{4} D_{11} + \frac{1}{4} D_{13} + \frac{5}{32} D_{21} + \frac{5}{32} D_{23} + \frac{11}{16} D_{22} \end{pmatrix}. \end{split}$$