
Continuous Systems
an example

A constant load P is moving on a simply supported beam of length L with
constant velocity, v(t ) = v = const. The load enters the beam at t = 0 and exits at
t = L/v = t0; the beam is uniform, i.e., m(x) = m = const and E J (x) = E J = const.
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Figure 1: the beam, the load and the sign conventions.

Assume that the beam is horizontal and the load P is vertical, indicate the
transverse, vertical displacements of the beam with u(x, t ), positive if directed
as the vertical load, the bending moment with Mb(x, t ), positive if it extends the
bottom fibers of the beam and the shear force with V (x, t ), positive if clockwise.

Plot the response in the interval 0 ≤ t ≤ t0 = L/v in terms of u(L/2, t ) and
Mb(L/2, t ).

] ] ] ] ] ] ] ] ]

Solution

The equation of dynamic equilibrium (specialized for an uniform beam) is

m
∂2u(x, t )

∂t 2
+E J

∂4u(x, t )

∂x4
= p(x, t )

where
p(x, t ) = Pδ(x − v t )

with the Dirac’s delta defined by δ(x −x0) ≡ 0 and
∫

f (x)δ(x −x0)dx = f (x0).
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The solution will be computed by separation of variables

u(x, t ) = q(t )φ(x)

and modal analysis,

u(x, t ) =
∞∑

n=1
qn(t )φn(x)

The relevant quantities for the modal analysis, obtained solving the eigen-
value problem that arises from the beam boundary conditions are

βn = nπ

L
, φn(x) = sinβn x = sin

nπx

L
,

mn = mL

2
, ω2

n =β4
n

E J

m
= n4π4 E J

mL4
.

The orthogonality relationships are∫ L

0
φn(x)m(x)φm(x)dx = mnδnm ,∫ L

0
φn(x)[E J (x)φ′′

m(x)]′′ dx = knδnm = mnω
2
nδnm

(the Kroneker’s δ is a completely different thing from Dirac’s δ, OK?).

Using the orthogonality relationships, we can write an infinity of uncoupled
equation of motion for the modal coordinates

mn q̈(t )+kn q(t ) =
∫ L

0
φn(x)p(x, t )dx = Pφn(v t ) = P sin

nπv t

L
, n = 1,2, . . . ,∞,

considering that the initial conditions are nil for all the modal equations, with
ωn = nπv/L and βn =ωn/ωn the individual solutions are given by

qn(t ) = P

kn

1

1−β2
n

(
sinωn t −βn sinωn t

)
, 0 ≤ t ≤ L

v
.

With the position
v = κω1L/π

it is βn = nκω1/n2ω1 = κ/n and we can rewrite the solution as

qn(t ) = 2PL3

π4E J

1

n2(n2 −κ2)

(
sin(

κ

n
ωn t )− κ

n
sinωn t

)
, 0 ≤ t ≤ L

v
,

and it is apparent that exists a critical velocity vc =ω1L/π that gives a resonance
condition for the first mode response, while for v = 2 vc the second mode is in
resonance, etc.

2



Introducing an adimensional time coordinate ξ with t = t0ξ, noting that
ωn = n2ω1 we can write

qn(ξ) = 2PL3

π4E J

1

n2(n2 −κ2)

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
, 0 ≤ ξ≤ 1.

If we denote with xP(t ) the position of the load at time t , it is xP(t ) = v t = ξL,
or ξ = xP/L and the expression u(x,ξ) = ∑

qn(ξ)φn(x) can be interpreted as the
displacement in x when the load is positioned in ξL.

The displacement and the bending moment are given by

u(x,ξ) = 2PL3

π4E J

∞∑
n=1

1

n2(n2 −κ2)

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
sin(nπ

x

L
),

Mb(x,ξ) =−E J
∂2u(x,ξ)

∂x2

= 2PL

π2

∞∑
n=1

1

n2 −κ2

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
sin(nπ

x

L
).

If we consider the midspan deflection (bending moment) due to a static
load P on the beam, the maximum deflection (bending moment) is expected
when the load is placed at midspan, and it is

ustat(L/2,1/2) = PL3

48E J
and Mb stat(L/2,1/2) = PL

4
.

Normalizing the midspan displacement with respect to the maximum static
displacement, we write

u(L/2,ξ)

ustat(L/2,1/2)
=∆(ξ) = 96

π4

∞∑
n=1

1

n2(n2 −κ2)

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
sin(n

π

2
),

the partial sum of the first N terms will be denoted by

∆N (ξ) = 96

π4

N∑
n=1

1

n2(n2 −κ2)

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
sin(n

π

2
).

Analogously, normalizing with respect to the maximum static bending mo-
ment, it is

Mb(x,ξ)

Mb stat(L/2,1/2)
=µ(ξ) == 8

π2

∞∑
n=1

1

n2 −κ2

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
sin(nπ

x

L
),

the partial sum being denoted by

µN (ξ) = 8

π2

N∑
n=1

1

n2 −κ2

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
sin(nπ

x

L
).
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Figure 2: displacement error function.
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Figure 3: bending moment error function.

The PL3/48E J normalized midspan statical displacement, that you can com-
pute using Betti’s theorem, is∆stat(ξ) = 3ξ−4ξ3 for 0 ≤ ξ≤ 1/2 and we can define
a percent error function (using κ= 10−6 to obtain a good approximation to the
static response)

εu,N (ξ) = 100

(
1− ∆N (ξ)|κ=10−6

∆stat(ξ)

)
for 0 ≤ ξ≤ 1/2,

that you can see plotted in figure 2. With 5 terms in the series, you have an
approximation of about 1/1000.

Analogously we can use the midspan bending moment, normalized with
respect to PL/4, µstat(ξ) = 2ξ to define another percent error function

εM ,N = 100

(
1− µN (ξ)|κ=10−6

µstat(ξ)

)
that you can see plotted in figure 3. With 17 terms in the series, you have an
approximation of about 4%.
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Finally, we plot the normalized displacement (figure 4) and the normalized
bending moment (figure 5) for different values of κ; note that for the displace-
ment I used N = 11 while for the bending moment I used N = 25.
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Figure 4: normalized midspan displacement.
(for different velocities v = κvc)
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Figure 5: normalized midspan bending moment.
(for different velocities v = κvc)
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