Continuous Systems
an example

A constant load P is moving on a simply supported beam of length L with
constant velocity, v(f) = v = const. Theload enters the beam at # = 0 and exits at
t = L/v = ty; the beam is uniform, i.e., m(x) = m = const and EJ(x) = EJ = const.
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Figure 1: the beam, the load and the sign conventions.

Assume that the beam is horizontal and the load P is vertical, indicate the
transverse, vertical displacements of the beam with u(x, t), positive if directed
as the vertical load, the bending moment with My (x, £), positive if it extends the
bottom fibers of the beam and the shear force with V (x, t), positive if clockwise.

Plot the response in the interval 0 < ¢ < fy = L/v in terms of u(L/2,f) and
My (L2, ).
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Solution

The equation of dynamic equilibrium (specialized for an uniform beam) is
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where
p(x,t) = Po(x—vt)

with the Dirac’s delta defined by § (x — x¢) =0 and [ f(x)d (x — x0) dx = f (xp).
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The solution will be computed by separation of variables
u(x, 1) = q()$p(x)

and modal analysis,

u(x, ) =Y qn(D)Ppn(x)
n=1

The relevant quantities for the modal analysis, obtained solving the eigen-
value problem that arises from the beam boundary conditions are
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The orthogonality relationships are
L
f Gn(X)M(X)Pm (%) dX = Mpbpm,
0

L
fo Gn(X)[EJ(X)P (01" dx = kS nm = Muw?6 pm

(the Kroneker’s ¢ is a completely different thing from Dirac’s §, OK?).

Using the orthogonality relationships, we can write an infinity of uncoupled
equation of motion for the modal coordinates
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mnq(t)+knq(t):f ¢On(xX)p(x,t)dx = Pp,(vt) = Psin 7 n=12,...,00,
0

considering that the initial conditions are nil for all the modal equations, with
wp, =nnv/Land B, = w,/w, the individual solutions are given by
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With the position
v=Kxwi1Lin
itis B, = nxw,/ n?w, = ~/n and we can rewrite the solution as
=22 1 (s Ewpt - Esi /| 0<r<i
= sin(—w, ) — —sinw, t], s=t<-—,
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and itis apparent that exists a critical velocity v, = wy L/7 that gives a resonance
condition for the first mode response, while for v = 2 v. the second mode is in
resonance, etc.



Introducing an adimensional time coordinate ¢ with ¢ = ¢, noting that
w, = n*w; we can write

2PL L (singume) - Ssin( 5))
HE] 20E =D (sm nné nsm K]l' ,

qn(S) = 0<és<l.

If we denote with xp(#) the position of the load at time ¢, itis xp(¢) = vt =¢L,
or ¢ = xp/L and the expression u(x,¢) =3 q,(&)¢p,(x) can be interpreted as the
displacement in x when the load is positioned in ¢ L.

The displacement and the bending moment are given by

2P1% & 1 . K  n _ B
u(x,§) = —yy n;l 202 —xD) (sm(mrf) - Zsm(?nf)) sm(nnz),
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If we consider the midspan deflection (bending moment) due to a static
load P on the beam, the maximum deflection (bending moment) is expected
when the load is placed at midspan, and it is
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Normalizing the midspan displacement with respect to the maximum static
displacement, we write

Ustat (L12,1/2) = and My stat (L/12,1/2) = —

u(L/Z,(f) 96 00 . K n2 ' i
m n4 Z nz(nz (Sm(”mf)—;Sln(?ﬂf))sm(ng),

the partial sum of the first IV terms will be denoted by
WLy - (s'n(n o Ssin( 6)) sin(n’)
————- | sin(nné) — —sin(—=n¢) |sin(n—-).
N n4 = n?(n?-«?) n K 2
Analogously, normalizing with respect to the maximum static bending mo-
ment, it is

My (x,¢)
My, stat (L/2, 1/2)

K n?
wé) = Z (sm(nmf) —Esm(—né))sm(nn ),

the partial sum being denoted by

8 N ) K . n? ) X
Un(€) = —ZZ (sm(nnﬁ)—Esm(?ﬂf))sm(nnz).
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Figure 3: bending moment error function.

The PL*/age7 normalized midspan statical displacement, that you can com-
pute using Betti’s theorem, is Agg (&) = 3¢ —4&3 for 0 < ¢ < 1/2 and we can define
a percent error function (using ¥ = 107 to obtain a good approximation to the
static response)

AN(E)lx=10-6
Astat ($)

that you can see plotted in figure 2. With 5 terms in the series, you have an
approximation of about 1/1000.

Analogously we can use the midspan bending moment, normalized with
respect to PL/4, usiac(§) = 2 to define another percent error function

€u,n()=100(1- for0<é <1/,

_ BN@)lx=10-6

€EM,N = 100 (1
Mstat )

that you can see plotted in figure 3. With 17 terms in the series, you have an
approximation of about 4%.



Finally, we plot the normalized displacement (figure 4) and the normalized
bending moment (figure 5) for different values of «x; note that for the displace-
ment [ used N = 11 while for the bending moment [ used N = 25.
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Figure 4: normalized midspan displacement.
(for different velocities v = x v¢)
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Figure 5: normalized midspan bending moment.
(for different velocities v = k v.)



