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Introduction

A periodic loading is characterized by the identity

p(t) = p(t + T )

where T is the period of the loading, and ω1 = 2π
T is its

principal frequency.

           

p

t

p(t + T )p(t)

T
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Introduction

Periodic loadings can be expressed as an infinite series of
harmonic functions using Fourier theorem, e.g., an
antisymmetric loading is

p(t) = p(−t) =
∑∞

j=1 pj sin jω1t =
∑∞

j=1 pj sinωj t.

The steady-state response of a SDOF system for a harmonic
loading ∆pj(t) = pj sinωj t is known; with βj = ωj/ωn it is:

xj ,s-s =
pj
k D(βj , ζ) sin(ωj t − θ(βj , ζ)).

In general, it is possible to sum all steady-state responses,
the infinite series giving the SDOF response to p(t).
Due to the asymptotic behaviour of D(β; ζ) (D goes to zero
for large, increasing β) it is apparent that a good
approximation to the steady-state response can be obtained
using a limited number of low-frequency terms.
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Fourier Series

Using Fourier theorem any practical periodic loading can be
expressed as a series of harmonic loading terms.
Consider a loading of period Tp, its Fourier series is given by

p(t) = a0 +

∞∑

j=1

aj cosωj t +
∞∑

j=1

bj sinωj t, ωj = j ω1 = j
2π
Tp

,

where the harmonic amplitude coefficients have expressions:

a0 =
1
Tp

∫Tp

0
p(t) dt, aj =

2
Tp

∫Tp

0
p(t) cosωj t dt,

bj =
2
Tp

∫Tp

0
p(t) sinωj t dt,

as, by orthogonality,∫Tp
o p(t)cosωj dt =

∫Tp
o aj cos2ωj t dt =

Tp
2 aj , etc etc.
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Fourier Coefficients

If p(t) has not an analytical representation and must be measured
experimentally or computed numerically, we may assume that it is
possible

(a) to divide the period in N equal parts ∆t = Tp/N,

(b) measure or compute p(t) at a discrete set of instants
t1, t2, . . . , tN , with tm = m∆t,

obtaining a discrete set of values pm, m = 1, . . . ,N (note that
p0 = pN by periodicity).
Using the trapezoidal rule of integration, with p0 = pN we can
write, for example, the cosine-wave amplitude coefficients,

aj u
2∆t
Tp

N∑

m=1

pm cosωj tm

=
2
N

N∑

m=1

pm cos(jω1m∆t) =
2
N

N∑

m=1

pm cos
jm 2π

N
.

It’s worth to note that the discrete function cos jm 2π
N is periodic

with period N.
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Exponential Form

The Fourier series can be written in terms of the exponentials
of imaginary argument,

p(t) =
∞∑

j=−∞
Pj exp iωj t

where the complex amplitude coefficients are given by

Pj =
1
Tp

∫Tp

0
p(t) exp iωj t dt, j = −∞, . . . ,+∞.

For a sampled pm we can write, using the trapezoidal
integration rule and substituting tm = m∆t = mTp/N,
ωj = j 2π/Tp:

Pj u
1
N

N∑

m=1

pm exp(−i
2π j m
N

),
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Undamped Response

We have seen that the steady-state response to the jth
sine-wave harmonic can be written as

xj =
bj

k

[
1

1− β2
j

]
sinωj t, βj = ωj/ωn,

analogously, for the jth cosine-wave harmonic,

xj =
aj

k

[
1

1− β2
j

]
cosωj t.

Finally, we write

x(t) =
1
k



a0 +

∞∑

j=1

[
1

1− β2
j

]
(aj cosωj t + bj sinωj t)



 .
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Damped Response

In the case of a damped oscillator, we must substitute the
steady state response for both the jth sine- and cosine-wave
harmonic,

x(t) =
a0

k
+

1
k

∞∑

j=1

+(1− β2
j ) aj − 2ζβj bj

(1− β2
j )

2 + (2ζβj)2
cosωj t+

+
1
k

∞∑

j=1

+2ζβj aj + (1− β2
j ) bj

(1− β2
j )

2 + (2ζβj)2
sinωj t.

As usual, the exponential notation is neater,

x(t) =
∞∑

j=−∞

Pj

k
exp iωj t

(1− β2
j ) + i (2ζβj)

.
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Example

As an example, consider the loading
p(t) = max{p0 sin 2πt

Tp
, 0}

a0 =
1
Tp

∫Tp/2

0
po sin

2πt
Tp

dt =
p0

π
,

aj =
2
Tp

∫Tp/2

0
po sin

2πt
Tp

cos
2πjt
Tp

dt =

{
0 for j odd
p0
π

[
2

1−j2

]
for j even,

bj =
2
Tp

∫Tp/2

0
po sin

2πt
Tp

sin
2πjt
Tp

dt =

{
p0
2 for j = 1
0 for n > 1.
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Example cont.

Assuming β1 = 3/4, from
p = p0

π

(
1+ π

2 sinω1t − 2
3 cos 2ω1t − 2

15 cos 4ω2t − . . .
)
with the

dynamic amplifiction factors

D1 =
1

1− (1 3
4 )

2
=

16
7
,

D2 =
1

1− (2 3
4 )

2
= −

4
5
,

D4 =
1

1− (4 3
4 )

2
= −

1
8
, D6 = . . .

etc, we have

x(t) =
p0

kπ

(
1+

8π
7

sinω1t +
8
15

cos 2ω1t +
1
60

cos 4ω1t + . . .

)

Take note, these solutions are particular solutions! If your solution
has to respect given initial conditions, you must consider also the
homogeneous solution.
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Example cont.
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Outline of Fourier transform
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Non periodic loadings

It is possible to extend the Fourier analysis to non periodic
loading. Let’s start from the Fourier series representation of
the load p(t),

p(t) =
+∞∑

−∞
Pr exp(iωr t), ωr = r∆ω, ∆ω =

2π
Tp

,

introducing P(iωr ) = PrTp and substituting,

p(t) =
1
Tp

+∞∑

−∞
P(iωr ) exp(iωr t) =

∆ω

2π

+∞∑

−∞
P(iωr ) exp(iωr t).

Due to periodicity, we can modify the extremes of integration
in the expression for the complex amplitudes,

P(iωr ) =

∫+Tp/2

−Tp/2
p(t) exp(−iωr t) dt.
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Non periodic loadings (2)

If the loading period is extended to infinity to represent the
non-periodicity of the loading (Tp →∞) then (a) the frequency
increment becomes infinitesimal (∆ω = 2π

Tp
→ dω) and (b) the discrete

frequency ωr becomes a continuous variable, ω.
In the limit, for Tp →∞ we can then write

p(t) =
1
2π

∫+∞

−∞
P(iω) exp(iωt) dω

P(iω) =

∫+∞

−∞
p(t) exp(−iωt) dt,

which are known as the inverse and the direct Fourier Transforms,
respectively, and are collectively known as the Fourier transform pair.
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SDOF Response

In analogy to what we have seen for periodic loads, the response of a
damped SDOF system can be written in terms of H(iω), the complex
frequency response function,

x(t) =
1
2π

∫+∞

−∞
H(iω)P(iω) exp iωt dt, where

H(iω) =
1
k

[
1

(1− β2) + i(2ζβ)

]
=

1
k

[
(1− β2) − i(2ζβ)
(1− β2)2 + (2ζβ)2

]
, β =

ω

ωn
.

To obtain the response through frequency domain, you should evaluate
the above integral, but analytical integration is not always possible, and
when it is possible, it is usually very difficult, implying contour
integration in the complex plane (for an example, see Example E6-3 in
Clough Penzien).
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Outline of the Discrete Fourier Transform
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Discrete Fourier Transform

To overcome the analytical difficulties associated with the inverse
Fourier transform, one can use appropriate numerical methods, leading
to good approximations.
Consider a loading of finite period Tp, divided into N equal intervals
∆t = Tp/N, and the set of values ps = p(ts) = p(s∆t). We can
approximate the complex amplitude coefficients with a sum,

Pr =
1
Tp

∫Tp

0
p(t) exp(−iωr t) dt, that, by trapezoidal rule, is

u
1

N∆t

(
∆t

N−1∑

s=0

ps exp(−iωr ts)

)
=

1
N

N−1∑

s=0

ps exp(−i
2πrs
N

).
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Discrete Fourier Transform (2)

In the last two passages we have used the relations
pN = p0, exp(iωr tN) = exp(ir∆ωTp) = exp(ir2π) = exp(i0)

ωr ts = r∆ω s∆t = rs
2π
Tp

Tp

N
=

2π rs
N

.

Take note that the discrete function exp(−i 2πrs
N ), defined for integer

r , s is periodic with period N, implying that the complex amplitude
coefficients are themselves periodic with period N.

Pr+N = Pr

Starting in the time domain with N distinct complex numbers, ps , we
have found that in the frequency domain our load is described by N
distinct complex numbers, Pr , so that we can say that our function is
described by the same amount of information in both domains.
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Aliasing

Only N/2 distinct frequen-
cies (

∑N−1
0 =

∑+N/2
−N/2) con-

tribute to the load represen-
tation, what if the frequency
content of the loading has
contributions from frequen-
cies higher thanωN/2? What
happens is aliasing, i.e., the
upper frequencies contribu-
tions are mapped to contri-
butions of lesser frequency.

-1

-0.5

 0

 0.5

 1

0 1/4 Tp

sin(21 * (2π)/Tp * s Tp/N), N=20, s=0,..,20
sin(22 * (2π)/Tp * s Tp/N), N=20, s=0,..,20

See the plot above: the contributions from the high frequency sines,
when sampled, are indistinguishable from the contributions from lower
frequency components, i.e., are aliased to lower frequencies!
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Aliasing (2)

I The maximum frequency that can be described in the
DFT is called the Nyquist frequency, ωNy =

1
2

2π
∆t .

I It is usual in signal analysis to remove the signal’s higher
frequency components preprocessing the signal with a
filter or a digital filter.

I It is worth noting that the resolution of the DFT in the
frequency domain for a given sampling rate is
proportional to the number of samples, i.e., to the
duration of the sample.
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The Fast Fourier Transform
The operation count in a DFT is in the order of N2 A Fast Fourier
Transform is an algorithm that reduces the operation count. The first
and simpler FFT algorithm is the Decimation in Time algorithm by
Tukey and Cooley (1965).
Assume N is even, and divide the DFT summation to consider even and
odd indices s

Xr =

N−1∑

s=0

xse− 2πi
N sr , r = 0, . . . ,N − 1

=

N/2−1∑

q=0

x2qe− 2πi
N (2q)r +

N/2−1∑

q=0

x2q+1e− 2πi
N (2q+1)r

collecting e− 2πi
N r in the second term and letting 2q

N = q
N/2

=

N/2−1∑

q=0

x2qe
− 2πi

N/2 qr
+ e− 2πi

N r
N/2−1∑

q=0

x2q+1e
− 2πi

N/2 qr

We have two DFT’s of length N/2, the operations count is hence
2(N/2)2 = N2/2, but we have to combine these two halves in the full
DFT.
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The Fast Fourier Transform

Say that
Xr = Er + e− 2πi

N rOr

where Er and Or are the even and odd half-DFT’s, of which we
computed only coefficients from 0 to N/2− 1.
To get the full sequence we have to note that

1. the E and O DFT’s are periodic with period N/2, and

2. exp(−2πi(r + N/2)/N) = e−πi exp(−2πir/N) = − exp(−2πir/N),

so that we can write

Xr =

{
Er + exp(−2πir/N)Or if r < N/2,
Er−N/2 − exp(−2πir/N)Or−N/2 if r > N/2.

The algorithm that was outlined can be applied to the computation of
each of the half-DFT’s when N/2 were even, so that the operation
count goes to N2/4. If N/4 were even ...
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Pseudocode for CT algorithm

def fft2(X, N):
if N = 1 then

Y = X
else

Y0 = fft2(X0, N/2)
Y1 = fft2(X1, N/2)
for k = 0 to N/2-1

Y_k = Y0_k + exp(2 pi i k/N) Y1_k
Y_(k+N/2) = Y0_k - exp(2 pi i k/N) Y1_k

endfor
endif

return Y
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f rom cmath impo r t exp , p i

de f d_f f t ( x , n ) :
""" D i r e c t f f t o f x , a l i s t o f n=2∗∗m complex v a l u e s """
r e t u r n _f f t ( x , n , [ exp (−2∗ p i ∗1 j ∗k/n ) f o r k i n range ( n / 2 ) ] )

de f i _ f f t ( x , n ) :
""" I n v e r s e f f t o f x , a l i s t o f n=2∗∗m complex v a l u e s """
t r an s f o rm = _f f t ( x , n , [ exp (+2∗ p i ∗1 j ∗k/n ) f o r k i n range ( n / 2 ) ] ) ]
r e t u r n [ x/n f o r x i n t r an s f o rm ]

de f _f f t ( x , n , tw i d d l e ) :
""" Dec imat ion i n Time FFT , to be c a l l e d by d_f f t and i _ f f t .
x i s the s i g n a l to t rans fo rm , a l i s t o f complex v a l u e s
n i s i t s l eng th , r e s u l t s a r e unde f i n ed i f n i s not a power o f 2
tw i s a l i s t o f tw i d d l e f a c t o r s , precomputed by the c a l l e r

r e t u r n s a l i s t o f complex va l u e s , to be no rma l i z ed i n ca se o f an
i n v e r s e t r an s f o rm """

i f n == 1 : r e t u r n x # bottom reached , DFT o f a l e n g t h 1 vec x i s x

# c a l l f f t w i th the even and the odd c o e f f i c i e n t s i n x
# the r e s u l t s a r e the so c a l l e d even and odd DFT ’ s
y_0 = _f f t ( x [ 0 : : 2 ] , n /2 , tw [ : : 2 ] )
y_1 = _f f t ( x [ 1 : : 2 ] , n /2 , tw [ : : 2 ] )

# assemb le the p a r t i a l r e s u l t s " i n_p lace " :
# 1 s t h a l f o f f u l l DFT i s put i n even DFT, 2nd h a l f i n odd DFT
f o r k i n range ( n /2 ) :

y_0 [ k ] , y_1 [ k ] = y_0 [ k]+tw [ k ]∗y_1 [ k ] , y_0 [ k]−tw [ k ]∗y_1 [ k ]

# conca t ena t e the two h a l v e s o f the DFT and r e t u r n to c a l l e r
r e t u r n y_0+y_1
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de f main ( ) :
"""Run some t e s t c a s e s """
f rom cmath impo r t cos , s i n , p i

de f t e s t i t ( t i t l e , seq ) :
""" u t i l i t y to fo rmat and p r i n t a v e c t o r and the i f f t o f i t s f f t """
l_seq = l e n ( seq )
p r i n t "−"∗5 , t i t l e , "−"∗5
p r i n t "\n" . j o i n ( [

"%10.6 f ␣ : : ␣%10.6 f , ␣%10.6 f j " % ( a . r e a l , t . r e a l , t . imag )
f o r ( a , t ) i n z i p ( seq , i _ f f t ( d_f f t ( seq , l_seq ) , l_seq ) )
] )

l e n g t h = 32

t e s t i t ( " Square ␣wave" , [+1.0+0.0 j ]∗ ( l e n g t h /2) + [−1.0+0.0 j ]∗ ( l e n g t h /2))
t e s t i t ( " S ine ␣wave" , [ s i n ((2∗ p i ∗k )/ l e n g t h ) f o r k i n range ( l e n g t h ) ] )
t e s t i t ( " Cos ine ␣wave" , [ cos ((2∗ p i ∗k )/ l e n g t h ) f o r k i n range ( l e n g t h ) ] )

i f __name__ == "__main__" :
main ( )
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Dynamic Response (1)

To evaluate the dynamic response of a linear SDOF system in the
frequency domain, use the inverse DFT,

xs =

N−1∑

r=0

Vr exp(i
2π rs
N

), s = 0, 1, . . . ,N − 1

where Vr = Hr Pr . Pr are the discrete complex amplitude coefficients
computed using the direct DFT, and Hr is the discretization of the
complex frequency response function, that for viscous damping is

Hr =
1
k

[
1

(1− β2r ) + i(2ζβr )

]
=

1
k

[
(1− β2r ) − i(2ζβr )

(1− β2r )2 + (2ζβr )2

]
, βr =

ωr

ωn
.

while for hysteretic damping is

Hr =
1
k

[
1

(1− β2r ) + i(2ζ)

]
=

1
k

[
(1− β2r ) − i(2ζ)
(1− β2r )2 + (2ζ)2

]
.
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Some words of caution

If you’re going to approach the application of the complex
frequency response function without proper concern, you’re
likely to be hurt.
Let’s say ∆ω = 1.0, N = 32, ωn = 3.5 and r = 30, what do
you think it is the value of β30? If you are thinking
β30 = 30∆ω/ωn = 30/3.5 ≈ 8.57 you’re wrong!

Due to aliasing, ωr =

{
r∆ω r 6 N/2
(r − N)∆ω r > N/2

,

note that in the upper part of the DFT the coefficients
correspond to negative frequencies and, staying within our
example, it is β30 = (30− 32)× 1/3.5 ≈ −0.571.
If N is even, PN/2 is the coefficient corresponding to the
Nyquist frequency, if N is odd PN−1

2
corresponds to the

largest positive frequency, while PN+1
2

corresponds to the
largest negative frequency.
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Response to General Dynamic Loading
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Response to a short duration load

An approximate procedure to evaluate the maximum
displacement for a short impulse loading is based on the
impulse-momentum relationship,

m∆ẋ =

∫ t0
0
[p(t) − kx(t)] dt.

When one notes that, for small t0, the displacement is of the
order of t20 while the velocity is in the order of t0, it is
apparent that the kx term may be dropped from the above
expression, i.e.,

m∆ẋ u
∫ t0
0
p(t) dt.
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Response to a short duration load

Using the previous approximation, the velocity at time t0 is

ẋ(t0) =
1
m

∫ t0
0
p(t) dt,

and considering again a negligibly small displacement at the
end of the loading, x(t0) u 0, one has

x(t − t0) u
1

mωn

∫ t0
0
p(t) dt sinωn(t − t0).

Please note that the above equation is exact for an
infinitesimal impulse loading.
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Undamped SDOF

For an infinitesimal impulse, the impulse-momentum is
exactly p(τ) dτ and the response is

dx(t − τ) =
p(τ) dτ
mωn

sinωn(t − τ), t > τ,

and to evaluate the response at time t one has simply to sum
all the infinitesimal contributions for τ < t,

x(t) =
1

mωn

∫ t

0
p(τ) sinωn(t − τ) dτ, t > 0.

This relation is known as the Duhamel integral, and tacitly
depends on initial rest conditions for the system.
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Damped SDOF

The derivation of the equation of motion for a generic load is
analogous to what we have seen for undamped SDOF, the
infinitesimal contribution to the response at time t of the
load at time τ is

dx(t) =
p(τ)
mωD

dτ sinωD(t − τ) exp(−ζωn(t − τ)) t > τ

and integrating all infinitesimal contributions one has

x(t) =
1

mωD

∫ t

0
p(τ) sinωD(t−τ) exp(−ζωn(t−τ)) dτ, t > 0.
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Evaluation of Duhamel integral, undamped

Using the trig identity

sin(ωnt −ωnτ) = sinωnt cosωnτ− cosωnt sinωnτ

the Duhamel integral is rewritten as

x(t) =

∫t
0 p(τ) cosωnτ dτ

mωn
sinωnt −

∫t
0 p(τ) sinωnτ dτ

mωn
cosωnt

= A(t) sinωnt −B(t) cosωnt

where {
A(t) = 1

mωn

∫t
0 p(τ) cosωnτ dτ

B(t) = 1
mωn

∫t
0 p(τ) sinωnτ dτ
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Numerical evaluation of Duhamel integral,
undamped

Usual numerical procedures can be applied to the evaluation
of A and B, e.g., using the trapezoidal rule, one can have,
with AN = A(N∆τ) and yN = p(N∆τ) cos(N∆τ)

AN+1 = AN +
∆τ

2mωn
(yN + yN+1) .
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Evaluation of Duhamel integral, damped

For a damped system, it can be shown that

x(t) = A(t) sinωDt −B(t) cosωDt

with

A(t) =
1

mωD

∫ t

0
p(τ)

exp ζωnτ

exp ζωnt
cosωDτ dτ,

B(t) =
1

mωD

∫ t

0
p(τ)

exp ζωnτ

exp ζωnt
sinωDτ dτ.
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Numerical evaluation of Duhamel integral, damped

Numerically, using e.g. Simpson integration rule and
yN = p(N∆τ) cosωDτ,

AN+2 = AN exp(−2ζωn∆τ)+

∆τ

3mωD
[yN exp(−2ζωn∆τ) + 4yN+1 exp(−ζωn∆τ) + yN+2]

N = 0, 2, 4, · · ·
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Transfer Functions

The response of a linear SDOF system to arbitrary loading
can be evaluated by a convolution integral in the time
domain,

x(t) =
∫ t

0
p(τ) h(t − τ) dτ,

with the unit impulse response function
h(t) = 1

mωD
exp(−ζωnt) sin(ωDt), or through the

frequency domain using the Fourier integral

x(t) =
∫+∞

−∞
H(ω)P(ω) exp(iωt) dω,

where H(ω) is the complex frequency response function.
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Transfer Functions

These response functions, or transfer functions, are
connected by the direct and inverse Fourier transforms:

H(ω) =

∫+∞

−∞
h(t) exp(−iωt) dt,

h(t) =
1
2π

∫+∞

−∞
H(ω) exp(iωt) dω.
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Relationship of transfer functions

We write the response and its Fourier transform:

x(t) =
∫ t

0
p(τ)h(t − τ) dτ =

∫ t

−∞
p(τ)h(t − τ) dτ

X (ω) =

∫+∞

−∞

[∫ t

−∞
p(τ)h(t − τ) dτ

]
exp(−iωt) dt

the lower limit of integration in the first equation was
changed from 0 to −∞ because p(τ) = 0 for τ < 0, and since
h(t − τ) = 0 for τ > t, the upper limit of the second integral
in the second equation can be changed from t to +∞,

X (ω) = lim
s→∞

∫+s

−s

∫+s

−s
p(τ)h(t − τ) exp(−iωt) dt dτ
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Relationship of transfer functions

Introducing a new variable θ = t − τ we have

X (ω) = lim
s→∞

∫+s

−s
p(τ) exp(−iωτ) dτ

∫+s−τ

−s−τ
h(θ) exp(−iωθ) dθ

with lim
s→∞

s − τ =∞, we finally have

X (ω) =

∫+∞

−∞
p(τ) exp(−iωτ) dτ

∫+∞

−∞
h(θ) exp(−iωθ) dθ

= P(ω)

∫+∞

−∞
h(θ) exp(−iωθ) dθ

where we have recognized that the first integral is the Fourier
transform of p(t).
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Relationship of transfer functions

Our last relation was

X (ω) = P(ω)

∫+∞

−∞
h(θ) exp(−iωθ) dθ

but X (ω) = H(ω)P(ω), so that, noting that in the above
equation the last integral is just the Fourier transform of
h(θ), we may conclude that, effectively, H(ω) and h(t) form
a Fourier transform pair.


