FFT analyis

The response function

The response function is
1 nwi
1+208,i—p2 O,

with the caution that, for n > N/2, the frequency nw| must be wrapped.

Assuming that #;, { and N are defined outside our function, we can write

In [23]: def resfun(n):
if n>N/2: n=n-N
return 1.0/ (1.0+n*bl* (2*z*1j-n*bl))

Note above that we have not introduced the dimensional factor 1/k.

The load function

Just as in the spreadsheet:

In [24]: def load(t):
if t<tl: return pO*t
if t<t2: return (1.5-0.5%*t)*p0
return 0.0

The loading data

We define the load over a period longer than its effective duration, we decide the number of samples and compute the
fundamental frequency of the DFT.

In [25]: p0=400000.0
tl=1.0
£t2=3.0

Generation of the load vector

First, the vector of times 7,,, using a convenience function, then we apply the load function to this vector of times (the



trick is vectorize-ing the load function, so that it can be applied to a vector.

Just to be sure that's all OK, let's plot the resulting load vector.

In [26]: t=linspace(0., T, N, endpoint=False)
p=vectorize (load) (t)
figure(l); plot(t,p)

Out[26]: [<matplotlib.lines.Line2D at 0x5660350>]

400000

350000

300000

250000

200000

150000

100000

50000

DD 1 2 3 4 5 & 7

The FFT of the load

It's a line of code (let's plot the real and imaginary components of P.)

In [27]: P =P = fft.fft (p+0j)
figure(2); plot(P.real,'-b', P.imag,'-r")

Out[27]: [<matplotlib.lines.Line2D at 0x56986d0>,
<matplotlib.lines.Line2D at 0x5698b90>]

_30 500 1000 1500 2000 2500 3000 3500 4000 4500



Our plot is not very clear... there is a convenience fuction fft. fftshift that wraps the FFT placing the zero
frequency element in the middle of the vector. We construct the shifted FFT and then we plot it:

In [28]: Ps = fft.fftshift (P)
figure(3); plot(Ps.real,'-b', Ps.imag, '-r'")

Out[28]: [<matplotlib.lines.Line2D at 0x5919710>,
<matplotlib.lines.Line2D at 0x5919bd0>]

_BD 500 1000 1500 2000 2500 3000 3500 4000 4300

It is however better to zoom the plot near the centre of the n axis

In [29]: axis([2038,2058,-3.2e8,3.2e8]);plot(Ps.real,'-b', Ps.imag,'-1r")

Out[29]: [<matplotlib.lines.Line2D at 0x5921750>,
<matplotlib.lines.Line2D at 0x5cb2690>]

2040 2045 2050 2055

Computing the response

The characteristics of the dynamic system



The mass, the natural period of vibration and the corresponding natural frequency, the damping ratio { and finally /3,
the frequency ratio associated with the fundamental frequency of the DFT of the loading

In [30]: mass=60E3

Tn=0.60

wn = 2*pi/Tn ; k = mass*wn*wn
z=0.00

bl = wl/wn

The FFT of the response

Is computed multiplying the DFT of the load by the vector with the samples of the response function, computed on the
fly using the vectorize trick.

In [31]: X=P*vectorize(resfun) (range (N))

The response
Is computed applying the inverse DFT to the DFT of the response.

Then we plot it (applying the correction for static displacement) and look at what happens fort = 0

In [32]: x=fft.ifft (X)
figure (4);grid();lot (t,x/k)plot(t,x/k)

Out[32]: [<matplotlib.lines.Line2D at 0x5c8fd10>]

D':l:" T T T T T T T

006

005

o4

003

002

001

000

—0oly 1 2 3 4 5 3 7 B

As you can see, the initial conditions are different from (0,0). We change the damping ratio and compute again the
response

In [33]: z=0.05
X=P*vectorize (resfun) (range (N))
x=fft.ifft (X)
grid () ;plot (t,x/k)



Out[33]: [<matplotlib.lines.Line2D at 0x5f0e8d0>]

007

006

005

004

003

002

0ol

000

-0.01 . L
o 1 2 3 4 5 G 7 8

Now the initial conditions are respected with a good approximation.

The key point is, leave a zero-trail of sufficient length, so that the response at the end of the period is sufficiently close
to zero.



