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Piecewise exact method

I We use the exact solution of the equation of motion for
a system excited by a linearly varying force, so the
source of all errors lies in the piecewise linearisation of
the force function and in the approximation due to a
local linear model.

I We will see that an appropriate time step can be decided
in terms of the number of points required to accurately
describe either the force or the response function.
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Piecewise exact method

For a generic time step of duration h, consider
I {x0, ẋ0} the initial state vector,
I p0 and p1, the values of p(t) at the start and the end of

the integration step,
I the linearised force

p(τ) = p0 + ατ, 0 ≤ τ ≤ h, α = (p(h)− p(0))/h,

I the forced response

x = e−ζωτ (A cos(ωDτ)+B sin(ωDτ))+(αkτ+kp0−αc)/k2,

where k and c are the stiffness and damping of the
SDOF system.
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Piecewise exact method

Evaluating the response x and the velocity ẋ for τ = 0 and
equating to {x0, ẋ0}, writing ∆st = p(0)/k and
δ(∆st) = (p(h)− p(0))/k, one can find A and B

A =

(
ẋ0 + ζωB − δ(∆st)

h

)
1

ωD

B = x0 +
2ζ

ω

δ(∆st)

h
−∆st

substituting and evaluating for τ = h one finds the state
vector at the end of the step.
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Piecewise exact method

With

Sζ,h = sin(ωDh) exp(−ζωh) and Cζ,h = cos(ωDh) exp(−ζωh)

and the previous definitions of ∆st and δ(∆st), finally we can write

x(h) = ASζ,h +B Cζ,h + (∆st + δ(∆st))−
2ζ

ω

δ(∆st)

h

ẋ(h) = A(ωDCζ,h − ζωSζ,h)−B(ζωCζ,h + ωDSζ,h) +
δ(∆st)

h

where

B = x0+
2ζ

ω

δ(∆st)

h
−∆st, A =

(
ẋ0 + ζωB − δ(∆st)

h

)
1

ωD
.
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Example

We have a damped system that is excited by a load in
resonance with the system, we know the exact response and
we want to compute a step-by-step approximation using
different step lengths.

m=1000kg,

k=4π2 1000N/m,

ω=2π,

ζ=0.05,

p(t) =
4π25N sin(2π t)
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Exact
h=T/4
h=T/8

h=T/16

It is apparent that you have a very good approximation when
the linearised loading is a very good approximation of the
input function, let’s say h ≤ T/10.

SbS Methods,
Rigid Bodies

Giacomo Boffi

Examples of SbS
Methods
Piecewise Exact
Central
Differences
Integration
Constant
Acceleration
Linear
Acceleration
Newmark Beta
Non Linear
Systems
Newton-Raphson

Central differences

To derive the Central Differences Method, we write the eq.
of motion at time τ = 0 and find the initial acceleration,

mẍ0 + cẋ0 + kx0 = p0 ⇒ ẍ0 =
1

m
(p0 − cẋ0 − kx0)

On the other hand, the initial acceleration can be expressed
in terms of finite differences,

ẍ0 =
x1 − 2x0 + x−1

h2
=

1

m
(p0 − cẋ0 − kx0)

solving for x1

x1 = 2x0 − x−1 +
h2

m
(p0 − cẋ0 − kx0)



SbS Methods,
Rigid Bodies

Giacomo Boffi

Examples of SbS
Methods
Piecewise Exact
Central
Differences
Integration
Constant
Acceleration
Linear
Acceleration
Newmark Beta
Non Linear
Systems
Newton-Raphson

Central differences

We have an expression for x1, the displacement at the end of the
step,

x1 = 2x0 − x−1 +
h2

m
(p0 − cẋ0 − kx0),

but we have an additional unknown, x−1... if we write the finite
differences approximation to ẋ0 we can find an approximation to
x−1 in terms of the initial velocity ẋ0 and the unknown x1

ẋ0 =
x1 − x−1

2h
⇒ x−1 = x1 − 2hẋ0

Substituting in the previous equation

x1 = 2x0 − x1 + 2hẋ0 +
h2

m
(p0 − cẋ0 − kx0),

and solving for x1

x1 = x0 + hẋ0 +
h2

2m
(p0 − cẋ0 − kx0)
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Central differences

x1 = x0 + hẋ0 +
h2

2m
(p0 − cẋ0 − kx0)

To start a new step, we need the value of ẋ1, but we may
approximate the mean velocity, again, by finite differences

ẋ0 + ẋ1
2

=
x1 − x0

h
⇒ ẋ1 =

2(x1 − x0)
h

− ẋ0

The method is very simple, but it is conditionally stable. The
stability condition is defined with respect to the natural
frequency, or the natural period, of the SDOF oscillator,

ωnh ≤ 2⇒ h ≤ Tn
π
≈ 0.32Tn

For a SDOF this is not relevant because, as we have seen in
our previous example, we need more points for response cycle
to correctly represent the response.



SbS Methods,
Rigid Bodies

Giacomo Boffi

Examples of SbS
Methods
Piecewise Exact
Central
Differences
Integration
Constant
Acceleration
Linear
Acceleration
Newmark Beta
Non Linear
Systems
Newton-Raphson

Methods based on Integration

We will make use of an hypothesis on the variation of the
acceleration during the time step and of analytical
integration of acceleration and velocity to step forward from
the initial to the final condition for each time step.
In general, these methods are based on the two equations

ẋ1 = ẋ0 +

∫ h

0
ẍ(τ) dτ,

x1 = x0 +

∫ h

0
ẋ(τ) dτ,

which express the final velocity and the final displacement in
terms of the initial values x0 and ẋ0 and some definite
integrals that depend on the assumed variation of the
acceleration during the time step.
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Integration Methods

Depending on the different assumption we can make on the
variation of velocity, different integration methods can be
derived.
We will see

I the constant acceleration method,
I the linear acceleration method,
I the family of methods known as Newmark Beta

Methods, that comprises the previous methods as
particular cases.
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Constant Acceleration

Here we assume that the acceleration is constant during each
time step, equal to the mean value of the initial and final
values:

ẍ(τ) = ẍ0 + ∆ẍ/2,

where ∆ẍ = ẍ1 − ẍ0, hence

ẋ1 = ẋ0 +

∫ h

0
(ẍ0 + ∆ẍ/2) dτ

⇒ ∆ẋ = ẍ0h+ ∆ẍh/2

x1 = x0 +

∫ h

0
(ẋ0 + (ẍ0 + ∆ẍ/2)τ)dτ

⇒ ∆x = ẋ0h+ (ẍ0)h
2/2 + ∆ẍh2/4
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Constant acceleration

Taking into account the two equations on the right of the
previous slide, and solving for ∆ẋ and ∆ẍ in terms of ∆x,
we have

∆ẋ =
2∆x− 2hẋ0

h
, ∆ẍ =

4∆x− 4hẋ0 − 2ẍ0h
2

h2
.

We have two equations and three unknowns... Assuming that
the system characteristics are constant during a single step,
we can write the equation of motion at times τ = h and
τ = 0, subtract member by member and write the
incremental equation of motion

m∆ẍ+ c∆ẋ+ k∆x = ∆p,

that is a third equation that relates our unknowns.
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Constant acceleration

Substituting the above expressions for ∆ẋ and ∆ẍ in the
incremental eq. of motion and solving for ∆x gives, finally,

∆x =
p̃

k̃
, ∆ẋ =

2∆x− 2hẋ0
h

where

k̃ = k +
2c

h
+

4m

h2

p̃ = ∆p+ 2cẋ0 +m(2ẍ0 +
4

h
ẋ0)

While it is possible to compute the final acceleration in terms
of ∆x, to achieve a better accuracy it is usually computed
solving the equation of equilibrium written at the end of the
time step.
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Constant Acceleration

Two further remarks

1. The method is unconditionally stable
2. The effective stiffness, disregarding damping, is
k̃ ≈ k + 4m/h2.

Dividing both members of the above equation by k it is

k̃

k
= 1 +

4

ω2
n h2

= 1 +
4

(2π/Tn)2 h2
=

T 2
n

π2h2
,

The number nT of time steps in a period Tn is related to the time step
duration, nT = Tn/h, solving for h and substituting in our last
equation, we have

k̃

k
≈ 1 +

n2
T

π2

For, e.g., nT = 2π it is k̃/k ≈ 1 + 4, the mass contribution to the
effective stiffness is four times the elastic stiffness and the 80% of the
total.



SbS Methods,
Rigid Bodies

Giacomo Boffi

Examples of SbS
Methods
Piecewise Exact
Central
Differences
Integration
Constant
Acceleration
Linear
Acceleration
Newmark Beta
Non Linear
Systems
Newton-Raphson

Linear Acceleration

We assume that the acceleration is linear, i.e.

ẍ(t) = ẍ0 + ∆ẍ
τ

h

hence

∆ẋ = ẍ0h+ ∆ẍh/2, ∆x = ẋ0h+ ẍ0h
2/2 + ∆ẍh2/6

Following a derivation similar to what we have seen in the
case of constant acceleration, we can write, again,

∆x =
(
k + 3

c

h
+ 6

m

h2

)−1
[
∆p+ c(ẍ0

h

2
+ 3ẋ0) +m(3ẍ0 + 6

ẋ0
h

)

]

∆ẋ = ∆x
3

h
− 3ẋ0 − ẍ0

h

2
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Linear Acceleration

The linear acceleration method is conditionally stable, the
stability condition being

h

T
≤
√

3

π
≈ 0.55

When dealing with SDOF systems, this condition is never of
concern, as we need a shorter step to accurately describe the
response of the oscillator, let’s say h ≤ 0.12T ...
When stability is not a concern, the accuracy of the linear
acceleration method is far superior to the accuracy of the
constant acceleration method, so that this is the method of
choice for the analysis of SDOF systems.
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Newmark Beta Methods

The constant and linear acceleration methods are just two
members of the family of Newmark Beta methods, where we
write

∆ẋ = (1− γ)hẍ0 + γhẍ1

∆x = hẋ0 + (
1

2
− β)h2ẍ0 + βh2ẍ1

The factor γ weights the influence of the initial and final
accelerations on the velocity increment, while β has a similar
role with respect to the displacement increment.
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Newmark Beta Methods

Using γ 6= 1/2 leads to numerical damping, so when
analysing SDOF systems, one uses γ = 1/2 (numerical
damping may be desirable when dealing with MDOF
systems).
Using β = 1

4 leads to the constant acceleration method,
while β = 1

6 leads to the linear acceleration method. In the
context of MDOF analysis, it’s worth knowing what is the
minimum β that leads to an unconditionally stable behaviour.
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Newmark Beta Methods

The general format for the solution of the incremental
equation of motion using the Newmark Beta Method can be
written as follows:

∆x =
∆p̃

k̃

∆v =
γ

β

∆x

h
− γ

β
v0 + h

(
1− γ

2β

)
a0

with

k̃ = k +
γ

β

c

h
+

1

β

m

h2

∆p̃ = ∆p+

(
h

(
γ

2β
− 1

)
c+

1

2β
m

)
a0 +

(
γ

β
c+

1

β

m

h

)
v0
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Non Linear Systems

A convenient procedure for integrating the response of a non
linear system is based on the incremental formulation of the
equation of motion, where for the stiffness and the damping
were taken values representative of their variation during the
time step: in line of principle, the mean values of stiffness
and damping during the time step, or, as this is usually not
possible, their initial values, k0 and c0.
The Newton-Raphson method can be used to reduce the
unbalanced forces at the end of the step.
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Non Linear Systems

Usually we use the modified Newton-Raphson method,
characterised by not updating the system stiffness at each
iteration. In pseudo-code, referring for example to the
Newmark Beta Method

x1,v1,f1 = x0,v0,f0 % initialisation; gb=gamma/beta
Dr = DpTilde
loop:

Dx = Dr/kTilde
x2 = x1 + Dx
v2 = gb*Dx/h + (1-gb)*v1 + (1-gb/2)*h*a0
x_pl = update_u_pl(...)
f2 = k*(x2-x_pl)
% important
Df = (f2-f1) + (kTilde-k_ini)*Dx
Dr = Dr - Df
x1, v1, f1 = x2, v2, f2
if ( tol(...) < req_tol ) BREAK loop
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Exercise

A system has a mass m = 1000kg, a stiffness k = 40000N/m
and a viscous damping whose ratio to the critical damping is
ζ = 0.03.
The spring is elastoplastic, with a yielding force of 2500N.
The load is an half-sine impulse, with duration 0.3s and
maximum value of 6000N.
Use the constant acceleration method to integrate the
response, with h = 0.05s and, successively, h = 0.02s . Note
that the stiffness is either 0 or k, write down the expression
for the effective stiffness and loading in the incremental
formulation, write a spreadsheet or a program to make the
computations.


