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Introductory Remarks

Today we will study the properties of structural matrices,
that is the operators that relate the vector of system
coordinates x and its time derivatives ẋ and ẍ to the forces
acting on the system nodes, f S, f D and f I, respectively.

In the end, we will see again the solution of a MDOF
problem by superposition, and in general today we will revisit
many of the subjects of our previous class, but you know that
a bit of reiteration is really good for developing minds.
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Structural Matrices

We already met the mass and the stiffness matrix, M and K ,
and tangentially we introduced also the dampig matrix C .
We have seen that these matrices express the linear relation that
holds between the vector of system coordinates x and its time
derivatives ẋ and ẍ to the forces acting on the system nodes,
f S, f D and f I, elastic, damping and inertial force vectors.

M ẍ + C ẋ + K x = p(t)
f I + f D + f S = p(t)

Also, we know that M and K are symmetric and definite
positive, and that it is possible to uncouple the equation of
motion expressing the system coordinates in terms of the
eigenvectors, x(t) =

∑
qiψi , where the qi are the modal

coordinates and the eigenvectors ψi are the non-trivial solutions
to the characteristic equation,(

K −ω2M
)
ψ = 0
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Free Vibrations

From the homogeneous, undamped problem

M ẍ + K x = 0

introducing separation of variables

x(t) = ψ (A sinωt + B cosωt)

we wrote the homogeneous linear system(
K −ω2M

)
ψ = 0

whose non-trivial solutions ψi for ω2
i such that∥∥K −ω2

i M
∥∥ = 0 are the eigenvectors.

It was demonstrated that, for each pair of distint eigenvalues
ω2

r and ω2
s , the corresponding eigenvectors obey the

ortogonality condition,

ψT
s M ψr = δrsMr , ψT

s K ψr = δrsω
2
rMr .
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Additional Orthogonality Relationships

From
K ψs = ω

2
sM ψs

premultiplying by ψT
r KM−1 we have

ψT
r KM−1K ψs = ω

2
sψ

T
r K ψs = δrsω

4
rMr ,

premultiplying the first equation by ψT
r KM−1KM−1

ψT
r KM−1KM−1K ψs = ω

2
sψ

T
r KM−1K ψs = δrsω

6
rMr

and, generalizing,

ψT
r
(
KM−1)b K ψs = δrs

(
ω2

r
)b+1 Mr .
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Additional Relationships, 2

From
M ψs = ω

−2
s K ψs

premultiplying by ψT
r MK−1 we have

ψT
r MK−1M ψs = ω

−2
s ψ

T
r M ψs = δrs

Ms

ω2
s

premultiplying the first eq. by ψT
r
(
MK−1)2 we have

ψT
r
(
MK−1)2 M ψs = ω

−2
s ψ

T
r MK−1M ψs = δrs

Ms

ω4
s

and, generalizing,

ψT
r
(
MK−1)b M ψs = δrs

Ms

ω2
s
b
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Additional Relationships, 3

Defining Xrs(k) = ψT
r M

(
M−1K

)k
ψs we have

Xrs(0) = ψT
r Mψs = δrs

(
ω2

s
)0 Ms

Xrs(1) = ψT
r Kψs = δrs

(
ω2

s
)1 Ms

Xrs(2) = ψT
r
(
KM−1)1 Kψs = δrs

(
ω2

s
)2 Ms

· · ·
Xrs(n) = ψT

r
(
KM−1)n−1 Kψs = δrs

(
ω2

s
)n Ms

Observing that
(
M−1K

)−1
=
(
K−1M

)1

Xrs(−1) = ψT

r
(
MK−1)1 M ψs = δrs

(
ω2

s
)−1 Ms

· · ·
Xrs(−n) = ψT

r
(
MK−1)n M ψs = δrs

(
ω2

s
)−n Ms

finally
Xrs(k) = δrsω2k

s Ms for k = −∞, . . . ,∞.
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Flexibility

Given a system whose state is determined by the generalized
displacements xj of a set of nodes, we define the flexibility fjk
as the deflection, in direction of xj , due to the application of
a unit force in correspondance of the displacement xk . The
matrix F =

[
fjk
]
is the flexibility matrix.

The definition of flexibility put in clear that the degrees of
freedom correspond to the points where there is a)
application of external forces and/or b) presence of inertial
forces.
Given a load vector p =

{
pk
}
, the displacementent xj is

xj =
∑

fjkpk

or, in vector notation,

x = F p
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Example

a b

m, J

x1

x2

1

1

f22

f11

f21

f12

The dynamical system The degrees of freedom

Displacements due to p1 = 1 and due to p2 = 1.
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Elastic Forces

Momentarily disregarding inertial effects, each node shall be
in equilibrium under the action of the external forces and the
elastic forces, hence taking into accounts all the nodes, all
the external forces and all the elastic forces it is possible to
write the vector equation of equilibrium

p = f S

and, substituting in the previos vector expression of the
displacements

x = F f S
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Stiffness Matrix

The stiffness matrix K can be simply defined as the inverse
of the flexibility matrix F ,

K = F−1.

Alternatively the single coefficient kij can be defined as the
external force (equal and opposite to the corresponding
elastic force) applied to the DOF number i that gives place
to a displacement vector x(j) =

{
xn
}
=
{
δnj
}
, where all the

components are equal to zero, except for x(j)j = 1. Collecting
all the x(j) in a matrix X , it is X = I and we have, writing
all the equations at once,

X = I = F
[
kij
]
,⇒

[
kij
]
= K = F−1.

Finally,
p = f S = K x .
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Strain Energy

The elastic strain energy V can be written in terms of
displacements and external forces,

V =
1
2
pTx =

1
2


pT F p︸︷︷︸

x

,

xTK︸ ︷︷ ︸
pT

x .

Because the elastic strain energy of a stable system is always
greater than zero, K is a positive definite matrix. On the
other hand, for an unstable system, think of a compressed
beam, there are displacement patterns that are associated to
zero strain energy.
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Symmetry

Two sets of loads pA and pB are applied, one after the other,
to an elastic system; the work done is

VAB =
1
2
pAT

xA + pAT
xB +

1
2
pBT

xB .

If we revert the order of application the work is

VBA =
1
2
pBT

xB + pBT
xA +

1
2
pAT

xA.

The total work being independent of the order of loading,

pAT
xB = pBT

xA.
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Symmetry, 2

Expressing the displacements in terms of F ,

pAT
F pB = pBT

FpA,

both terms are scalars so we can write

pAT
F pB =

(
pBT

FpA
)T

= pAT
FT pB .

Because this equation holds for every p, we conclude that

F = FT .

The inverse of a symmetric matrix is symmetric, hence

K = KT .
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Exceptions or not

For the kind of structures we mostly deal with in our
examples, problems, exercises and assignments, that is simple
structures, it is usually convenient to compute the flexibility
matrix applying the Principle of Virtual Displacements (we
have seen an example last week) and inverting the flexibilty
to obtain the stiffness matrix, K = F−1.
For general structures, large and/or complex, the PVD
approach cannot work in practice, as the number of degrees
of freedom necessary to model the structural behaviour
exceed our ability to do pencil and paper computations...
Different methods are required to construct the stiffness
matrix for such large, complex structures.
Enters the Finite Element Method.
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FEM

The most common procedure to construct the matrices that describe
the behaviour of a complex system is the Finite Element Method, or
FEM. The procedure can be sketched in the following terms:

I the structure is subdivided in non-overlapping portions, the finite
elements, bounded by nodes, connected by the same nodes,

I the state of the structure can be described in terms of a vector x
of generalized nodal displacements,

I there is a mapping between element and structure DOF’s, iel 7→ r ,
I the element stiffness matrix, K el establishes a linear relation

between an element nodal displacements and forces,
I for each FE, all local kij ’s are contributed to the global stiffness

krs ’s, with i 7→ r and j 7→ s, taking in due consideration
differences between local and global systems of reference.

Note that in the r -th global equation of equilibrium we have internal
forces caused by the nodal displacements of the FE that have nodes iel
such that iel 7→ r , thus implying that global K is a banded matrix.
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Example

Consider a 2-D inextensible beam element, that has 4 DOF,
namely two transverse end displacements x1, x2 and two end
rotations, x3, x4. The element stiffness is computed using 4
shape functions φi , the transverse displacement being
v(s) =

∑
i φi (s)xi , the different φi are such all end

displacements or rotation are zero, except the one
corresponding to index i .
The shape functions for a beam are

φ1(s) = 1− 3
( s
L

)2
+ 2
( s
L

)3
, φ2(s) = 3

( s
L

)2
− 2
( s
L

)3
,

φ3(s) = s
(
1−

( s
L

)2
)
, φ4(s) = s

(( s
L

)2
−
( s
L

))
.



Structural
Matrices

Giacomo Boffi

Introductory
Remarks

Structural
Matrices

Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Strain Energy
Symmetry
Direct
Assemblage
Example
Mass Matrix
Consistent Mass
Matrix
Discussion
Damping Matrix
Example
Geometric
Stiffness
External Loading

Choice of
Property
Formulation

Example, 2

The element stiffness coefficients can be computed using,
what else, the PVD: we compute the external virtual work
done by a variation δ xi by the force due to a unit
displacement xj , that is kij ,

δWext = δ xi kij ,

the virtual internal work is the work done by the variation of
the curvature, δ xiφ

′′
i (s) by the bending moment associated

with a unit xj , φ′′
j (s)EJ(s),

δWint =

∫L
0
δ xiφ

′′
i (s)φ

′′
j (s)EJ(s) ds.
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Example, 3

The equilibrium condition is the equivalence of the internal
and external virtual works, so that simplifying δ xi we have

kij =

∫L
0
φ′′

i (s)φ
′′
j (s)EJ(s) ds.

For EJ = const,

f S =
2EJ
L3


6 6 3L 3L
6 6 −3L −3L
3L −3L 2L2 L2

3L −3L L2 2L2

 x
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Blackboard Time!

L

2L

EJ EJ

4EJ

x2 x3

x1
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Mass Matrix

The mass matrix maps the nodal accelerations to nodal
inertial forces, and the most common assumption is to
concentrate all masses in nodal point masses, without
rotational inertia, computed lumping a fraction of each
element mass (or a fraction of the supported mass) on all its
bounding nodes.
This procedure leads to a so called lumped mass matrix, a
diagonal matrix with diagonal elements greater than zero for
all the translational degrees of freedom, and diagonal
elements equal to zero for angular degrees of freedom.
The mass matrix is definite positive only if all the structure
DOF’s are translational degrees of freedom, otherwise M is
semi-definite positive and the eigenvalue procedure is not
directly applicable. This problem can be overcome either by
using a consistent mass matrix or using the static
condensation procedure.
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Consistent Mass Matrix

A consistent mass matrix is built using the rigorous FEM procedure,
computing the nodal reactions that equilibrate the distributed inertial
forces that develop in the element due to a linear combination of inertial
forces.
Using our beam example as a reference, consider the inertial forces
associated with a single nodal acceleration ẍj , fI,j(s) = m(s)φj (s)ẍj and
denote with mij ẍj the reaction associated with the i-nth degree of
freedom of the element, by the PVD

δ ximij ẍj =

∫
δ xiφi (s)m(s)φj (s)ds ẍj

simplifying

mij =

∫
m(s)φi (s)φj (s)ds.

For m(s) = m = const.

f I =
mL
420


156 54 22L −13L
54 156 13L −22L
22L 13L 4L2 −3L2

−13L −22L −3L2 4L2

 ẍ
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Consistent Mass Matrix, 2

Pro

I some convergence theorem of FEM theory holds only if
the mass matrix is consistent,

I sligtly more accurate results,
I no need for static condensation.

Contra

I M is no more diagonal, heavy computational
aggravation,

I static condensation is computationally beneficial,
inasmuch it reduces the global number of degrees of
freedom.
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Damping Matrix

For each element cij =
∫
c(s)φi (s)φj(s) ds and the damping

matrix C can be assembled from element contributions.
However, using the FEM C? = ΨTC Ψ is not diagonal and
the modal equations are uncoupled!
The alternative is to write directly the global damping
matrix, in terms of the underdetermined coefficients cb,

C =
∑
b

cbM
(
M−1K

)b
.
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Damping Matrix

With our definition of C ,

C =
∑
b

cbM
(
M−1K

)b
,

assuming normalized eigenvectors, we can write the
individual component of C? = ΨTC Ψ

c?ij = ψ
T
i C ψj = δij

∑
b

cbω
2b
j

due to the additional orthogonality relations, we recognize
that now C? is a diagonal matrix.
Introducing the modal damping Cj we have

Cj = ψ
T
j C ψj =

∑
b

cbω
2b
j = 2ζjωj

and we can write a system of linear equations in the cb.
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Example

We want a fixed, 5% damping ratio for the first three modes,
taking note that the modal equation of motion is

q̈i + 2ζiωi q̇i +ω
2
i qi = p?i

Using
C = c0M + c1K + c2KM−1K

we have

2× 0.05


ω1
ω2
ω3

 =

1 ω2
1 ω4

1
1 ω2

2 ω4
2

1 ω2
3 ω4

3


c0
c1
c2


Solving for the c’s and substituting above, the resulting
damping matrix is orthogonal to every eigenvector of the
system, for the first three modes, leads to a modal damping
ratio that is equal to 5%.
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Example

Computing the coefficients c0, c1 and c2 to have a 5% damping at
frequencies ω1 = 2, ω2 = 5 and ω3 = 8 we have c0 = 1200/9100,
c1 = 159/9100 and c2 = −1/9100.

Writing ζ(ω) =
1
2

( c0
ω

+ c1ω+ c2ω
3
)
we can plot the above function,

along with its two term equivalent (c0 = 10/70, c1 = 1/70).
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Negative damping? No, thank you: use only an even number of terms.
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Geometric Stiffness
A common assumption is based on a linear approximation, for a beam
element

f G = N
L


+1 −1 0 0
−1 +1 0 0
0 0 0 0
0 0 0 0

 x
L

x1 x2

N
Nf1 f2

f2 = −f1
f1L = N (x2 − x1)

It is possible to compute the geometrical stiffness matrix using FEM,
shape functions and PVD,

kG,ij =

∫
N(s)φ′

i (s)φ
′
j (s)ds,

for constant N

KG =
N
30L


36 −36 3L 3L
−36 36 −3L −3L
3L −3L 4L2 −L2

3L −3L −L2 4L2


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External Loadings

Following the same line of reasoning that we applied to find
nodal inertial forces, by the PVD and the use of shape
functions we have

pi (t) =
∫
p(s, t)φi (s) ds.

For a constant, uniform load p(s, t) = p = const, applied on
a beam element,

p = pL
{1

2
1
2

L
12 − L

12

}T



Structural
Matrices

Giacomo Boffi

Introductory
Remarks

Structural
Matrices

Evaluation of
Structural
Matrices

Choice of
Property
Formulation
Static
Condensation
Example

Choice of Property Formulation

Simplified Approach

Some structural parameter is approximated, only translational
DOF’s are retained in dynamic analysis.

Consistent Approach

All structural parameters are computed according to the
FEM, and all DOF’s are retained in dynamic analysis.

If we choose a simplified approach, we must use a procedure
to remove unneeded structural DOF’s from the model that
we use for the dynamic analysis.
Enter the Static Condensation Method.
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Static Condensation

We have, from a FEM analysis, a stiffnes matrix that uses all
nodal DOF’s, and from the lumped mass procedure a mass
matrix were only translational (and maybe a few rotational)
DOF’s are blessed with a non zero diagonal term. In this

case, we can always rearrange and partition the displacement
vector x in two subvectors: a) xA, all the DOF’s that are
associated with inertial forces and b) xB , all the remaining
DOF’s not associated with inertial forces.

x =
{
xA xB

}T
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Static Condensation, 2

After rearranging the DOF’s, we must rearrange also the
rows (equations) and the columns (force contributions) in the
structural matrices, and eventually partition the matrices so
that {

f I
0

}
=

[
MAA MAB
MBA MBB

]{
ẍA
ẍB

}
f S =

[
KAA KAB
KBA KBB

]{
xA
xB

}
with

MBA = MT
AB = 0, MBB = 0, KBA = KT

AB

Finally we rearrange the loadings vector and write...
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Static Condensation, 3

... the equation of dynamic equilibrium,

pA = MAAẍA + MAB ẍB + KAAxA + KABxB

pB = MBAẍA + MBB ẍB + KBAxA + KBBxB

The terms in red are zero, so we can simplify

MAAẍA + KAAxA + KABxB = pA

KBAxA + KBBxB = pB

solving for xB in the 2nd equation and substituting

xB = K−1
BBpB − K−1

BBKBAxA

pA − K−1
BBpB = MAAẍA +

(
KAA − KABK−1

BBKBA
)
xA
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Static Condensation, 4

Going back to the homogeneous problem, with obvious
positions we can write(

K −ω2M
)
ψA = 0

but the ψA are only part of the structural eigenvectors,
because in essentially every application we must consider also
the other DOF’s, so we write

ψi =

{
ψA,i
ψB,i

}
, with ψB,i = K−1

BBKBAψA,i
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Example

L

2L

EJ EJ

4EJ
x2 x3

x1

K = 2EJ
L3

12 3L 3L
3L 6L2 2L2

3L 2L2 6L2


Disregarding the factor 2EJ/L3,

KBB = L2
[
6 2
2 6

]
,K−1

BB =
1

32L2

[
6 −2
−2 6

]
,KAB =

[
3L 3L

]
The matrix K is

K =
2EJ
L3

(
12− KABK−1

BBKT
AB
)
=

39EJ
2L3


