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For a N-DOF system, it is possible and often advantageous
to represent the displacements x in terms of a linear
combination of the free vibration modal shapes, the
eigenvectors, by the means of a set of modal coordinates,

x =
∑
ψiqi = Ψq.

The eigenvectors play a role analogous to the role played by
trigonometric functions in Fourier Analysis,

I they possess orthogonality properties,
I we will see that it is usually possible to approximate the

response using only a few low frequency terms.
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The columns of the eigenmatrix Ψ are the N linearly
indipendent eigenvectors ψi , hence the eigenmatrix is
non-singular and it is always correct to write q = Ψ−1x.
However, it is not necessary to invert the eigenmatrix:
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If we write, again,

x =
∑
ψiqi = Ψq.

and multiply both members by ΨT M, taking into account
that ΨT MΨ = M? we have

ΨT Mx = M?q

but M? is a diagonal matrix, hence (M?)−1 = {δij/Mi } and
we can write

q = M?−1ΨT Mx, or qi =
ψT

i Mx
Mi

Note: this formula works also when we don’t know all the eigenvectors
and the inversion of a partial, rectangular Ψ is not feasible.
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Undamped System

The equation of motion is Mẍ + Kx = p(t).
Substituting in it x = Ψq, ẍ = Ψq̈, pre multiplying both
members by ΨT and exploiting the ortogonality rules, we
have

Mi q̈i +ω
2
i Miqi = p?

i (t), i = 1, . . . ,N.

with p?
i (t) = ψT

i p(t).
The equations of motion written in terms of nodal coordinates
constitute a system of N interdipendent, coupled differential equations,
written in terms of modal coordinates constitute a set of N indipendent,
uncoupled differential equations.
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Damped System
In general,

M ẍ + C ẋ + K x = p(t)
and with the usual stuff

Mi q̈i +ψ
T C Ψ q̇ +ω2

i Mi qi = p?
i (t),

with ψT
i C ψj = cij

Mi q̈i +
∑

j

cij q̇j +ω
2
i Mi qi = p?

i (t),

that is the equations will be uncoupled only if cij = δijCi .
If we define the damping matrix as

C =
∑

b

cbM
(
M−1K

)b
,

we know that, as required,

cij = δijCi with Ci (= 2ζi Miωi ) =
∑

b

cb
(
ω2

i
)b
.
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Damped Systems, a Comment

If the response is computed by modal superposition, it is
usually preferred a simpler but equivalent procedure: for
each mode of interest the analyst imposes a given damping
ratio and the integration of the modal equation of
equilibrium is carried out as usual.
The

∑
cb . . . procedure is useful when, e.g. for non-linear

problems, the integration of the eq. of motion is carried out
in nodal coordinates, because it is easier to specify damping
properties globally as elastic modes properties (that can be
measured or deduced from similar outsets) than to assign
correct damping properties at the FE level and assembling C
by the FEM.
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Initial Conditions

For a set of generic initial conditions x0, ẋ0, we can easily
have the initial conditions in modal coordinates:

q0 = M?−1ΨT Mx0

q̇0 = M?−1ΨT Mẋ0

and, for each mode, the total modal response can be
obtained by superposition of a particular integral ξi(t) and
the general integral of the homogeneous associate,

qi(t) = e−ζiωi t × (

(qi ,0 − ξi(0)) cosωDi t+

+
(q̇i ,0 − ξ̇i(0)) + (qi ,0 − ξi(0))ζiωi

ωDi
sinωDi t

) + ξi(t)
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Truncated sum
Having computed all qi(t), we can sum all the modal
responses,

x(t) = ψ1q1(t) +ψ2q2(t) + · · · +ψNqN(t) =
N∑

i=1
ψiqi(t)

It is capital to understand that a truncated sum, comprising
only a few of the lower frequency modes, gives a good
approximation of structural response:

x(t) ≈
M<N∑
i=1

ψiqi(t)

The importance of truncated sum approximation is twofold:
I less computational effort: less eigenpairs to calculate, less

equation of motion to integrate etc
I in FEM models the higher modes are rough approximations to

structural ones (mostly due to uncertainties in mass distribution
details) and the truncated sum excludes potentially spurious
contributions from the response.
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Elastic Forces

Until now, we showed interest in displacements only, but we
are interested in elastic forces too. We know that elastic
forces can be expressed in terms of displacements and the
stiffness matrix:

f S(t) = K x(t) = Kψ1q1(t) + Kψ2q2(t) + · · · .

From the characteristic equation we know that

Kψi = ω
2
i Mψi

substituting in the previous equation

f S(t) = ω2
1Mψ1q1(t) +ω2

2Mψ2q2(t) + · · · .
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Elastic Forces, 2

Obviously the higher modes’ force contributions, e.g.

f S(t) = ω2
1Mψ1q1(t) + · · · +ω2

2Mψ2q2(t) + · · ·

in a truncated sum will be higher than displacement ones or,
in different words, to estimate internal forces within given
accuracy, a greater number of modes must be considered in
a truncated sum than the number required to estimate
displacements within the same accuracy
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Example: problem statement

k2

k1

k3

m1

m2

m3

x3

x2

x1

k1 = 120MN/m, m1 = 200 t,
k2 = 240MN/m, m2 = 300 t,
k3 = 360MN/m, m3 = 400 t.

1. The above structure is subjected to these initial conditions,

xT
0 =
{
5mm 4mm 3mm

}
,

ẋT
0 =
{
0 9mm/s 0

}
.

Write the equation of motion using modal superposition.
2. The above structure is subjected to a half-sine impulse,

pT (t) =
{
1 2 2

}
2.5MN sin π t

t1
, with t1 = 0.02 s.

Write the equation of motion using modal superposition.



Superposition

Giacomo Boffi

Eigenvector
Expansion

Uncoupled
Equations of
Motion
Undamped

Damped System

Truncated Sum

Elastic Forces

Example

Example: structural matrices

k2

k1

k3

m1

m2

m3

x3

x2

x1

k1 = 120MN/m, m1 = 200 t,
k2 = 240MN/m, m2 = 300 t,
k3 = 360MN/m, m3 = 400 t.

The structural matrices can be written

K = k

[ 1 −1 0
−1 3 −2
0 −2 5

]
= kK , with k = 120MN

m ,

M = m

[2 0 0
0 3 0
0 0 4

]
= mM, with m = 100000 kg .
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Example: adimensional eigenvalues

We want the solutions of the characteristic equation, so we
start writing that the determinant of the equation must be
zero: ∥∥∥K − ω2

k/mM
∥∥∥ = ∥∥∥K −Ω2M

∥∥∥ = 0,

with ω2 = 1200
(
rad
s

)2
Ω2.

Expanding the determinant∥∥∥∥∥∥∥
1− 2Ω2 −1 0

−1 3− 3Ω2 −2
0 −2 5− 4Ω2

∥∥∥∥∥∥∥ = 0

we have the following algebraic equation of 3rd order in Ω2

24
(
Ω6 −

11
4 Ω

4 +
15
8 Ω

2 −
1
4

)
= 0.
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Example: table of eigenvalues etc

Here are the adimensional roots Ω2
i , i = 1, 2, 3, the

dimensional eigenvalues ω2
i = 1200 rad2s2 Ω

2
i and all the

derived dimensional quantities:

Ω2
1 = 0.17573 Ω2

2 = 0.8033 Ω2
3 = 1.7710

ω2
1 = 210.88 ω2

2 = 963.96 ω2
3 = 2125.2

ω1 = 14.522 ω2 = 31.048 ω3 = 46.099
f1 = 2.3112 f2 = 4.9414 f3 = 7.3370

T1 = 0.43268 T3 = 0.20237 T3 = 0.1363
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Example: eigenvectors and modal matrices

With ψ1j = 1, using the 2nd and 3rd equations,[
3 − 3Ω2

j −2
−2 5 − 4Ω2

j

]{
ψ2j
ψ3j

}
=

{
1
0

}
The above equations must be solved for j = 1, 2, 3.
For j = 1, it is{

2.47280290827ψ21 −2ψ31 = 1
−2ψ21 +4.29707054436ψ31 = 0

For j = 2, {
0.5901013613ψ22 −2ψ32 = 1

−2ψ22 +1.78680181507ψ32 = 0

Finally, for j = 3,{
−2.31290426958ψ23 −2ψ33 = 1

−2ψ23 −2.08387235944ψ33 = 0
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The solutions are finally collected in the eigenmatrix

Ψ =

[ 1 1 1
+0.648535272183 −0.606599092464 −2.54193617967
+0.301849953585 −0.678977475113 +2.43962752148

]
.

The Modal Matrices are

M? = ΨT M Ψ =

[362.6 0 0
0 494.7 0
0 0 4519.1

]
× 103 kg,

K? = ΨT K Ψ =

[76.50 0 0
0 477.0 0
0 0 9603.9

]
× 106 Nm
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Example: initial conditions in modal coordinates

q0 = (M?)−1ΨT M


5
4
3

 mm =


+5.9027
−1.0968
+0.1941

 mm,

q̇0 = (M?)−1ΨT M


0
9
0

 mm
s =


+4.8288
−3.3101
−1.5187

 mm
s
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Example: structural response

These are the displacements, in mm

x1 = +5.91 cos(14.5t + .06) + 1.10 cos(31.0t − 3.04) + 0.20 cos(46.1t − 0.17)
x2 = +3.83 cos(14.5t + .06) − 0.67 cos(31.0t − 3.04) − 0.50 cos(46.1t − 0.17)
x3 = +1.78 cos(14.5t + .06) − 0.75 cos(31.0t − 3.04) + 0.48 cos(46.1t − 0.17)

and these the elastic/inertial forces, in kN

f1 = +249. cos(14.5t + .06) + 212. cos(31.0t − 3.04) + 084. cos(46.1t − 0.17)
f2 = +243. cos(14.5t + .06) − 193. cos(31.0t − 3.04) − 319. cos(46.1t − 0.17)
f3 = +151. cos(14.5t + .06) − 288. cos(31.0t − 3.04) + 408. cos(46.1t − 0.17)

As expected, the contributions of the higher modes are more important
for the forces, less important for the displacements.
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Rayleigh Quotient
Rayleigh-Ritz Method
Subspace Iteration
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Introduction

Dynamic analysis of MDOF systems based on modal
superposition is both simple and efficient

I simple: the modal response can be easily computed,
analitically or numerically, with the techniques we have
seen for SDOF systems,

I efficient: in most cases, only the modal responses of a
few lower modes are required to accurately describe the
structural response.

As the structural matrices are easily assembled using the
FEM, our modal superposition procedure is ready to be
applied to structures with tenth, thousands or millions of
DOF’s! except that we can compute the eigenpairs only
when the analyzed structure has two, three or maybe four
degrees of freedom...
Enter the various Matrix Iterations procedures!
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Equilibrium

First, we will see an iterative procedure whose outputs are
the first, or fundamental, mode shape vector and the
corresponding eigenvalue.
When an undamped system freely vibrates, the equation of
motion is

K ψi = ω
2
i Mψi .

In equilibrium terms, the elastic forces are equal to the
inertial forces when the systems oscillates with frequency ω2

i
and mode shape ψi
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Proposal of an iterative procedure

Our iterative procedure will be based on finding a new
displacement vector xn+1 such that the elastic forces
f S = K xn+1 are in equilibrium with the inertial forces due
to the old displacement vector xn, f I = ω

2
i M xn,

K xn+1 = ω
2
i M xn.

Premultiplying by the inverse of K and introducing the
Dynamic Matrix, D = K−1M

xn+1 = ω
2
i K−1M xn = ω2

i D xn.

In the generative equation above we miss a fundamental
part, the square of the free vibration frequency ω2

i .
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The Matrix Iteration Procedure, 1

This problem is solved considering the xn as a sequence of normalized
vectors and introducing the idea of an unnormalized new displacement
vector, x̂n+1,

x̂n+1 = D xn,

note that we removed the explicit dependency on ω2
i .

The normalized vector is obtained applying to x̂n+1 a normalizing
factor, Fn+1,

xn+1 =
x̂n+1

Fn+1
,

but xn+1 = ω
2
i D xn = ω2

i x̂n+1, ⇒ 1
F

= ω2
i

If we agree that, near convergence, xn+1 ≈ xn, substituting in the
previous equation we have

xn+1 ≈ xn = ω2
i x̂n+1 ⇒ ω2

i ≈ xn

x̂n+1
.

Of course the division of two vectors is not an option, so we want to
twist it into something useful.
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Normalization

First, consider xn = ψi : in this case, for j = 1, . . . ,N it is

xn,j/x̂n+1,j = ω
2
i .

Analogously for xn 6= ψi it was demonstrated that

min
j=1,...,N

{
xn,j
x̂n+1,j

}
≤ ω2

i ≤ max
j=1,...,N

{
xn,j
x̂n+1,j

}
.

A more rational approach would make reference to a proper
vector norm, so using our preferred vector norm we can write

ω2
i ≈

x̂T
n+1M xn

x̂T
n+1M x̂n+1

,

(if memory helps, this is equivalent to the R11 approximation, that we
introduced studying Rayleigh quotient refinements).
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Proof of Convergence, 1

Until now we postulated that the sequence xn converges to
some, unspecified eigenvector ψi , now we will demonstrate
that the sequence converge to the first, or fundamental
mode shape,

lim
n→∞ xn = ψ1.

1. Expand x0 in terms of eigenvectors and modal coordinates:

x0 = ψ1q1,0 +ψ2q2,0 +ψ3q3,0 + · · · ,

2. The inertial forces, assuming that the system is vibrating
according to the fundamental frequency, are

f I,n=0 = ω
2
1M (ψ1q1,0 +ψ2q2,0 +ψ3q3,0 + · · · )

= M
(
ω2

1ψ1q1,0
ω2

1
ω2

1
+ω2

2ψ2q2,0
ω2

1
ω2

2
+ · · ·

)
.
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Proof of Convergence, 2

3. The deflections due to these forces (no hat!, we have multiplied
by ω2

1) are

xn=1 = K−1M
(
ω2

1ψ1q1,0
ω2

1
ω2

1
+ω2

2ψ2q2,0
ω2

1
ω2

2
+ · · ·

)
,

(note that we have multiplied and divided each term by ω2
i ).

4. Using ω2
j M ψj = Kψj ,

xn=1 = K−1
(

Kψ1q1,0
ω2

1
ω2

1
+ Kψ2q2,0

ω2
1

ω2
2
+ Kψ3q3,0

ω2
1

ω2
3
+ · · ·

)
= ψ1q1,0

ω2
1

ω2
1
+ψ2q2,0

ω2
1

ω2
2
+ψ3q3,0

ω2
1

ω2
3
+ · · ·
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Proof of Convergence, 3

5. Applying again the previous procedure, i.e., premultiply the right
member by ω2

1D, multiplying and dividing each term by ω2
i ,

symplifying, we have

xn=2 = ψ1q1,0

(
ω2

1
ω2

1

)2

+ψ2q2,0

(
ω2

1
ω2

2

)2

+ψ3q3,0

(
ω2

1
ω2

3

)2

+ · · ·

6. repeating the procedure for n times starting from x0, we have

xn = ψ1q1,0

(
ω2

1
ω2

1

)n

+ψ2q2,0

(
ω2

1
ω2

2

)n

+ψ3q3,0

(
ω2

1
ω2

3

)n

+ · · ·
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Proof of Convergence, 4

Going to the limit,

lim
n→∞ xn = ψ1q1,0

because

lim
n→∞

(
ω2

1
ω2

j

)n

= δ1j

Consequently,
lim

n→∞ |xn|

|x̂n|
= ω2

1
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Purified Vectors
If we know ψ1 and ω2

1 from the matrix iteration procedure it
is possible to compute the second eigenpair, following a
slightly different procedure.
Express the initial iterate in terms of the (unknown)
eigenvectors,

xn=0 = Ψqn=0

and premultiply by the (known) ψT
1 M:

ψT
1 M xn=0 = M1q1,n=0

solving for q1,n=0

q1,n=0 =
ψT

1 M xn=0
M1

.

Knowing the amplitude of the 1st modal contribution to
xn=0 we can write a purified vector,

yn=0 = xn=0 −ψ1q1,n=0.
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Convergence (?)

It is easy to demonstrate that using yn=0 as our starting
vector

lim
n→∞ yn = ψ2q2,n=0, lim

n→∞ |yn|

|ŷn|
= ω2

2.

because the initial amplitude of the first mode is null.
Due to numerical errors in the determination of fundamental
mode and in the procedure itself, using a plain matrix
iteration the procedure however converges to the 1st
eigenvector, so to preserve convergence to the 2nd mode it
is necessary that the iterated vector yn is purified at each
step n.
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Purification Procedure

The purification procedure is simple, at each step the
amplitude of the 1st mode is first computed, then removed
from the iterated vector yn

q1,n = ψT
1 Myn/M1,

ŷn+1 = D (yn −ψ1q1,n) = D
(

I − 1
M1
ψ1ψ

T
1 M

)
yn

Introducing the sweeping matrix S1 = I − 1
M1
ψ1ψ

T
1 M and

the modified dynamic matrix D2 = DS1, we can write

ŷn+1 = DS1yn = D2yn.

This is known as matrix iteration with sweeps.
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Third Mode

Using again the idea of purifying the iterated vector, starting with the
knowledge of the first and the second eigenpair,

ŷn+1 = D (yn −ψ1q1,n −ψ2q2,n)

with qn,1 as before and

q2,n = ψT
2 Myn/M2,

substituting in the expression for the purified vector

ŷn+1 = D
(

I − 1
M1
ψ1ψ

T
1 M︸ ︷︷ ︸

S1

−
1

M2
ψ2ψ

T
2 M
)

The conclusion is that the sweeping matrix and the modified dynamic
matrix to be used to compute the 3rd eigenvector are

S2 = S1 −
1

M2
ψ2ψ

T
2 M, D3 = D S2.
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Generalization to Higher Modes

The results obtained for the third mode are easily generalised.
It is easy to verify that the following procedure can be used to compute
all the modes.

Define S0 = I, let i = 1,
1. compute the modified dynamic matrix to be used for mode i ,

D i = D S i−i

2. compute ψi using the modified dynamic matrix;
3. compute the modal mass Mi = ψ

T M ψ;
4. compute the sweeping matrix S i that sweeps the contributions of

the first i modes from trial vectors,

S i = S i−1 −
1

Mi
ψiψ

T
i M ;

5. increment i , GOTO 1.

Well, we finally have a method that can be used to compute all the
eigenpairs of our dynamic problems, full circle!
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Discussion

The method of matrix iteration with sweeping is not used in
production because
1. D is a full matrix, even if M and K are banded

matrices, and the matrix product that is the essential
step in every iteration is computationally onerous,

2. the procedure is however affected by numerical errors.
While it is possible to compute all the eigenvectors and
eigenvalues of a large problem using our iterative procedure,
we can first optimize our procedure and later seek for
different, more efficient iterative procedures.
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Introduction to Inverse Iteration

Inverse iteration is based on the fact that the symmetric
stiffness matrix has a banded structure, that is a relatively
large triangular portion of the matrix is composed by zeroes

The banded structure is due to the FEM model that implies that in an
equation of equilibrium the only non zero elastic force coefficients are
due to degrees of freedom pertaining to FE that contains the degree of
freedom for which the equilibrium is written).
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Definition of LU decomposition

Every symmetric, banded matrix can be subjected to a so
called LU decomposition, that is, for K we write

K = L U

where L and U are, respectively, a lower- and an
upper-banded matrix.
If we denote with b the bandwidth of K , we have

L =
[
lij
]

with lij ≡ 0 for
{
i < j
j < i − b

and

U =
[
uij
]

with uij ≡ 0 for
{
i > j
j > i + b
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Twice the equations?

In this case, with wn = M xn, the recursion can be written

L U xn+1 = wn

or as a system of equations,

U xn+1 = zn+1

L zn+1 = wn

Apparently, we have doubled the number of unknowns, but
the zj ’s can be easily computed by the procedure of back
substitution.
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Back Substitution

Temporarily dropping the n and n + 1 subscripts, we can
write

z1 = (w1)/l11
z2 = (w2 − l21z1)/l22
z3 = (w3 − l31z1 − l32z2)/l33
· · ·

zj = (wj −

j−1∑
k=1

ljkzk)/ljj

· · ·

The x are then given by U x = z.
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Back Substitution

We have computed z by back substitution, we must solve
U x = z but U is upper triangular, so we have

xN = (zN)/uNN

xN−1 = (zN−1 − uN−1,NzN)/uN−1,N−1

xN−2 = (zN−2 − uN−2,NzN − uN−2,N−1zN−1)/uN−2,N−2

· · ·

xN−j = (zN−j −

j−1∑
k=0

uN−j,N−kzN−k)/uN−j,N−j ,

For moderately large systems, the reduction in operations
count given by back substitution with respect to matrix
multiplication is so large that the additional cost of the LU
decomposition is negligible.
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Introduction to Shifts

Inverse iteration can be applied to each step of matrix
iteration with sweeps, or to each step of a different
procedure intended to compute all the eigenpairs, the matrix
iteration with shifts.
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Matrix Iteration with Shifts, 1
If we write

ω2
i = µ+ λi ,

where µ is a shift and λi is a shifted eigenvalue, the
eigenvalue problem can be formulated as

K ψi = (µ+ λi)Mψi

or
(K − µM)ψi = λiMψi .

If we introduce a modified stiffness matrix

K = K − µM,

we recognize that we have a new problem, that has exactly
the same eigenvectors and shifted eigenvalues,

K φi = λiMφi ,

where
φi = ψi , λi = ω

2
i − µ.
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Matrix Iteration with Shifts, 2

The shifted eigenproblem can be solved, e.g., by matrix iteration and the
procedure will converge to the smallest absolute value shifted eigenvalue
and to the associated eigenvector. After convergence is reached,

ψi = φi , ω2
i = λi + µ.

The convergence of the method can be greatly enhanced if the shift µ is
updated every few steps during the iterative procedure using the current
best estimate of λi ,

λi,n+1 =
x̂n+1M xn

x̂n+1M x̂n
,

to improve the modified stiffness matrix to be used in the following
iterations,

K = K − λi,n+1M

Much literature was dedicated to the problem of choosing the initial
shifts so that all the eigenvectors can be computed sequentially without
missing any of them.
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Rayleigh Quotient for Discrete Systems

The matrix iteration procedures are usually used in conjunction with
methods derived from the Rayleigh Quotient method.
The Rayleigh Quotient method was introduced using distributed
flexibilty systems and an assumed shape function, but we have seen also
an example where the Rayleigh Quotient was computed for a discrete
system using an assumed shape vector.
The procedure to be used for discrete systems can be summarized as

x(t) = φZ0 sinωt, ẋ(t) = ωφZ0 cosωt,

2Tmax = ω
2φT Mφ, 2Vmax = φ

T K φ,
equating the maxima, we have

ω2 =
φT K φ
φT Mφ

=
k?

m?
.

Take note that φ is an assumed shape vector, not an eigenvector.
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Ritz Coordinates

For a N DOF system, an approximation to a displacement
vector x can be written in terms of a set of M < N assumed
shape, linearly independent vectors,

φi , i = 1, . . . ,M < N

and a set of Ritz coordinates zi , i − 1, . . . ,M < N:

x =
∑

i
φizi =Φ z.

We say approximation because a linear combination of
M < N vectors cannot describe every point in a N-space.
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Rayleigh Quotient in Ritz Coordinates

We can write the Rayleigh quotient as a function of the Ritz
coordinates,

ω2(z) = zTΦT KΦz
zTφT Mφz

=
k(z)
m(z) ,

but this is not an explicit fuction for any modal frequency...
On the other hand, we have seen that frequency estimates
are always greater than true frequencies, so our best
estimates are the the local minima of ω2(z), or the points
where all the derivatives of ω2(z) with respect to zi are zero:

∂ω2(z)
∂zj

=
m(z)∂k(z)

∂zi
− k(z)∂m(z)

∂zi
(m(z))2 = 0, for i = 1, . . . ,M < N
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Reduced Eigenproblem
Observing that

k(z) = ω2(z)m(z)
we can substitute into and simplify the preceding equation,

∂k(z)
∂zi

−ω2(z)∂m(z)
∂zi

= 0, for i = 1, . . . ,M < N

With the positions
K =ΦT K Φ, ,M =ΦT MΦ

we have
k(z) = zT Kz =

∑
i

∑
j

k ijzjzi ,

and
∂k(z)
∂zi

= 2
∑

j

k ijzj = 2Kz, and, analogously, ∂m(z)
∂zi

= 2Mz.

Substituting these results in ∂k(z)
∂zi

−ω2(z)∂m(z)
∂zi

= 0 we can write a new
homogeneous system in the Ritz coordinates, whose non trivial solutions
are the solutions of a reduced eigenvector problem in the M DOF Ritz
coordinates space, with reduced M × M matrices:

K z −ω2M z = 0.
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Modal Superposition?

After solving the reduced eigenproblem, we have a set of M
eigenvalues ω2

i and a corresponding set of M eigenvectors
z i . What is the relation between these results and the
eigenpairs of the original problem?
The ω2

i clearly are approximations from above to the real
eigenvalues, and if we write ψi =Φz i we see that, being

ψ
T
i Mψj = zT

i Φ
T MΦ︸ ︷︷ ︸
M

z j = M iδij ,

the approximated eigenvectors ψi are orthogonal with
respect to the structural matrices and can be used in
ordinary modal superposition techniques.
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A Last Question

One last question: how many ω2
i and ψi are effective

approximations to the true eigenpairs? Experience tells that
an effective approximation is to be expected for the first
M/2 eigenthings.
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Block Matrix Iteration

If we collect all the eigenvalues into a diagonal matrix Λ, we can write
the following equation,

K Ψ = M ΨΛ

where every matrix is a square, N × N matrix.
The Subspace Iteration method uses a reduced set of trials vectors,
packed in N × M matrix Φ0 and applies the procedure of matrix
iteration to the whole set of trial vectors at once:

Φ̂1 = K−1MΦ0.

We used, again, the hat notation to visualize that the iterated vectors
are not normalized by the application of the unknown Λ.
Should we proceed naively down this road, though, all the columns in
Φn would converge to the first eigenvector, subspace iteration being
only an expensive manner of applying matrix iteration without sweeps or
shifts...
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Subspace Iteration

Different options that comes to mind:
1. force all step n non-normalized vectors to be orthogonal with

respect to M, difficult, essentially we have to solve an eigenvalue
problem...

2. use the step n non-normalized vectors as a reduced base for the
Rayleigh-Ritz procedure, solve an eigenvalue problem

Kn = Φ̂
T
n K Φ̂n = Φ̂

T
n MΦn−1

Mn = Φ̂
T
n M Φ̂n

Kn Zn = Mn ZnΛn

whose outcome Λn, Zn is correlated to the structural eigenvalues,
and use the normalized Zn eigenvectors as the normalized,
un-hatted Φn.
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Subspace Iteration, 2

The second procedure is exactly what we want: we use Z to
start an iteration that will lead to a new set of base vectors
that, being computed from the equation of dynamic
equilibrium, will be a better base for the successive
estimation of the eigenvectors, a new subspace where the
eigenvectors can be more closely approximated.
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Final Considerations

The procedure converges very fast and with excellent
approximation to a number of eigenvalues and eigenvector p,
p = M − q where q is the number of required guard
eigenpairs.
Experience shows that we can safely use q = min{p, 8}.


