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For a N-DOF system, it is possible and often advantageous
to represent the displacements x in terms of a linear
combination of the free vibration modal shapes, the
eigenvectors, by the means of a set of modal coordinates,

x =
∑
ψiqi = Ψq.

The eigenvectors play a role analogous to the role played by
trigonometric functions in Fourier Analysis,

I they possess orthogonality properties,
I we will see that it is usually possible to approximate the

response using only a few low frequency terms.
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The columns of the eigenmatrix Ψ are the N linearly
indipendent eigenvectors ψi , hence the eigenmatrix is
non-singular and it is always correct to write q = Ψ−1x.
However, it is not necessary to invert the eigenmatrix:
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If we write, again,

x =
∑
ψiqi = Ψq.

and multiply both members by ΨT M, taking into account
that ΨT MΨ = M? we have

ΨT Mx = M?q

but M? is a diagonal matrix, hence (M?)−1 = {δij/Mi } and
we can write

q = M?−1ΨT Mx, or qi =
ψT

i Mx
Mi

Note: this formula works also when we don’t know all the eigenvectors
and the inversion of a partial, rectangular Ψ is not feasible.
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Undamped System

The equation of motion is Mẍ + Kx = p(t).
Substituting in it x = Ψq, ẍ = Ψq̈, pre multiplying both
members by ΨT and exploiting the ortogonality rules, we
have

Mi q̈i +ω
2
i Miqi = p?

i (t), i = 1, . . . ,N.

with p?
i (t) = ψT

i p(t).

The equations of motion written in terms of nodal coordinates
constitute a system of N interdipendent, coupled differential equations,
written in terms of modal coordinates constitute a set of N indipendent,
uncoupled differential equations.
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Damped System
In general,

M ẍ + C ẋ + K x = p(t)
and with the usual stuff

Mi q̈i +ψ
T C Ψ q̇ +ω2

i Mi qi = p?
i (t),

with ψT
i C ψj = cij

Mi q̈i +
∑

j

cij q̇j +ω
2
i Mi qi = p?

i (t),

that is the equations will be uncoupled only if cij = δijCi .

If we define the damping matrix as

C =
∑

b

cbM
(
M−1K

)b
,

we know that, as required,

cij = δijCi with Ci (= 2ζi Miωi ) =
∑

b

cb
(
ω2

i
)b
.
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Damped Systems, a Comment

If the response is computed by modal superposition, it is
usually preferred a simpler but equivalent procedure: for
each mode of interest the analyst imposes a given damping
ratio and the integration of the modal equation of
equilibrium is carried out as usual.

The
∑

cb . . . procedure is useful when, e.g. for non-linear
problems, the integration of the eq. of motion is carried out
in nodal coordinates, because it is easier to specify damping
properties globally as elastic modes properties (that can be
measured or deduced from similar outsets) than to assign
correct damping properties at the FE level and assembling C
by the FEM.
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Initial Conditions

For a set of generic initial conditions x0, ẋ0, we can easily
have the initial conditions in modal coordinates:

q0 = M?−1ΨT Mx0

q̇0 = M?−1ΨT Mẋ0

and, for each mode, the total modal response can be
obtained by superposition of a particular integral ξi(t) and
the general integral of the homogeneous associate,

qi(t) = e−ζiωi t × (

(qi ,0 − ξi(0)) cosωDi t+

+
(q̇i ,0 − ξ̇i(0)) + (qi ,0 − ξi(0))ζiωi

ωDi
sinωDi t

) + ξi(t)
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Truncated sum
Having computed all qi(t), we can sum all the modal
responses,

x(t) = ψ1q1(t) +ψ2q2(t) + · · · +ψNqN(t) =
N∑

i=1
ψiqi(t)

It is capital to understand that a truncated sum, comprising
only a few of the lower frequency modes, gives a good
approximation of structural response:

x(t) ≈
M<N∑
i=1

ψiqi(t)

The importance of truncated sum approximation is twofold:
I less computational effort: less eigenpairs to calculate, less

equation of motion to integrate etc
I in FEM models the higher modes are rough approximations to

structural ones (mostly due to uncertainties in mass distribution
details) and the truncated sum excludes potentially spurious
contributions from the response.
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Elastic Forces

Until now, we showed interest in displacements only, but we
are interested in elastic forces too. We know that elastic
forces can be expressed in terms of displacements and the
stiffness matrix:

f S(t) = K x(t) = Kψ1q1(t) + Kψ2q2(t) + · · · .

From the characteristic equation we know that

Kψi = ω
2
i Mψi

substituting in the previous equation

f S(t) = ω2
1Mψ1q1(t) +ω2

2Mψ2q2(t) + · · · .
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Elastic Forces, 2

Obviously the higher modes’ force contributions, e.g.

f S(t) = ω2
1Mψ1q1(t) + · · · +ω2

2Mψ2q2(t) + · · ·

in a truncated sum will be higher than displacement ones or,
in different words, to estimate internal forces within given
accuracy, a greater number of modes must be considered in
a truncated sum than the number required to estimate
displacements within the same accuracy
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Example: problem statement

k2

k1

k3

m1

m2

m3

x3

x2

x1

k1 = 120MN/m, m1 = 200 t,
k2 = 240MN/m, m2 = 300 t,
k3 = 360MN/m, m3 = 400 t.

1. The above structure is subjected to these initial conditions,

xT
0 =
{
5mm 4mm 3mm

}
,

ẋT
0 =
{
0 9mm/s 0

}
.

Write the equation of motion using modal superposition.
2. The above structure is subjected to a half-sine impulse,

pT (t) =
{
1 2 2

}
2.5MN sin π t

t1
, with t1 = 0.02 s.

Write the equation of motion using modal superposition.
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Example: structural matrices

k2

k1

k3

m1

m2

m3

x3

x2

x1

k1 = 120MN/m, m1 = 200 t,
k2 = 240MN/m, m2 = 300 t,
k3 = 360MN/m, m3 = 400 t.

The structural matrices can be written

K = k

[ 1 −1 0
−1 3 −2
0 −2 5

]
= kK , with k = 120MN

m ,

M = m

[2 0 0
0 3 0
0 0 4

]
= mM, with m = 100000 kg .
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Example: adimensional eigenvalues

We want the solutions of the characteristic equation, so we
start writing that the determinant of the equation must be
zero: ∥∥∥K − ω2

k/mM
∥∥∥ = ∥∥∥K −Ω2M

∥∥∥ = 0,

with ω2 = 1200
(
rad
s

)2
Ω2.

Expanding the determinant∥∥∥∥∥∥∥
1− 2Ω2 −1 0

−1 3− 3Ω2 −2
0 −2 5− 4Ω2

∥∥∥∥∥∥∥ = 0

we have the following algebraic equation of 3rd order in Ω2

24
(
Ω6 −

11
4 Ω

4 +
15
8 Ω

2 −
1
4

)
= 0.
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Example: table of eigenvalues etc

Here are the adimensional roots Ω2
i , i = 1, 2, 3, the

dimensional eigenvalues ω2
i = 1200 rad2s2 Ω

2
i and all the

derived dimensional quantities:

Ω2
1 = 0.17573 Ω2

2 = 0.8033 Ω2
3 = 1.7710

ω2
1 = 210.88 ω2

2 = 963.96 ω2
3 = 2125.2

ω1 = 14.522 ω2 = 31.048 ω3 = 46.099
f1 = 2.3112 f2 = 4.9414 f3 = 7.3370

T1 = 0.43268 T3 = 0.20237 T3 = 0.1363
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Example: eigenvectors and modal matrices

With ψ1j = 1, using the 2nd and 3rd equations,[
3 − 3Ω2

j −2
−2 5 − 4Ω2

j

]{
ψ2j
ψ3j

}
=

{
1
0

}
The above equations must be solved for j = 1, 2, 3.
For j = 1, it is{

2.47280290827ψ21 −2ψ31 = 1
−2ψ21 +4.29707054436ψ31 = 0

For j = 2, {
0.5901013613ψ22 −2ψ32 = 1

−2ψ22 +1.78680181507ψ32 = 0

Finally, for j = 3,{
−2.31290426958ψ23 −2ψ33 = 1

−2ψ23 −2.08387235944ψ33 = 0
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The solutions are finally collected in the eigenmatrix

Ψ =

[ 1 1 1
+0.648535272183 −0.606599092464 −2.54193617967
+0.301849953585 −0.678977475113 +2.43962752148

]
.

The Modal Matrices are

M? = ΨT M Ψ =

[362.6 0 0
0 494.7 0
0 0 4519.1

]
× 103 kg,

K? = ΨT K Ψ =

[76.50 0 0
0 477.0 0
0 0 9603.9

]
× 106 Nm
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Example: initial conditions in modal coordinates

q0 = (M?)−1ΨT M


5
4
3

 mm =


+5.9027
−1.0968
+0.1941

 mm,

q̇0 = (M?)−1ΨT M


0
9
0

 mm
s =


+4.8288
−3.3101
−1.5187

 mm
s
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Example: structural response

These are the displacements, in mm

x1 = +5.91 cos(14.5t + .06) + 1.10 cos(31.0t − 3.04) + 0.20 cos(46.1t − 0.17)
x2 = +3.83 cos(14.5t + .06) − 0.67 cos(31.0t − 3.04) − 0.50 cos(46.1t − 0.17)
x3 = +1.78 cos(14.5t + .06) − 0.75 cos(31.0t − 3.04) + 0.48 cos(46.1t − 0.17)

and these the elastic/inertial forces, in kN

f1 = +249. cos(14.5t + .06) + 212. cos(31.0t − 3.04) + 084. cos(46.1t − 0.17)
f2 = +243. cos(14.5t + .06) − 193. cos(31.0t − 3.04) − 319. cos(46.1t − 0.17)
f3 = +151. cos(14.5t + .06) − 288. cos(31.0t − 3.04) + 408. cos(46.1t − 0.17)

As expected, the contributions of the higher modes are more important
for the forces, less important for the displacements.
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