
Dynamics of Structures 2011-2012
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1 Dynamical Testing

A simple structure, which can be modeled as a single degree of freedom system,
is subjected to testing to measure its dynamical characteristics:

1. the structure is loaded with a static force F = 12.0 kN and the static dis-
placement is measured: u0 = 2.0mm,

2. the force is then suddenly released, the structure oscillates freely and after 12
cycles, corresponding to 3.0 s after the force release, the measured maximum
displacement is u12 = 0.6mm.

What are the values of m, ζ and k?

1.1 Solution

From ∆stat = u0 = P/k it is k = P/u0 = 12 000N
0.002m ⇒ k = 6MNm−1.

The period of vibration of the damped system being Td = 3 s
12 = 0.25 s, the

damped frequency is ωd = 2π
Td

= 25.1327 rad s−1.
We derive a recursive formula to compute ζ:

un
u0

= exp(−ζωtn) log
u0
un

= δlog = ζωtn
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but the natural frequency ω is ωd/
√

1− ζ2

δlog = ζ
ωd√

1− ζ2
tn

introducing a sequence of successive approximations to the damping ratio, ζ0, ζ1, . . . , ζn, ζn+1, . . .,
we can write

ζn+1 =
δlog
√

1− ζ2n
ωdtn

.

Initializing the procedure above with ζ0 = 0, after a few iterations we converge
to the values ζ = 1.5966% and ωn = 25.1359 rad s−1.
From k = ω2nm we find m = 9496.4395 kg

2 Vibration Isolation

A rotating machine is characterized by its mass m = 192 000 kg, its working
frequency fw = 100Hz and the value of the unbalanced load it exerts on its
supports, fw = 4800N.

Design a suspension system for the machine (i.e., give the values of k and
c , the stiffness and the damping constant) knowing that (1) it is necessary to
reduce the transmitted force to 400N, (2) to reduce the vibration amplitude
during transients the suspension must have a viscous damping ratio of 6%.

2.1 Solution

The requested transmissibility ratio is TRreq = 400N
4800N = 1

12 ; the effective TR must
be less or equal to 1/12 and, for ζ = 0.06, we have

TR =

√
1 + (0.12β)2√

(1− β2)2 + (0.12β)2
≤

1

12
,

that is, squaring both members and rearranging,

144(1 + 0.0144β2) ≤ 1− 2β2 + β4 + 0.0144β2.

Solving for β2 gives β2 = ω2

k/m ≥ 14.1588735215 ⇒ 14.1588735215k ≤ mω2,
with m = 192 000 kg and ω = 100 · 2π it is

k =
192 000 · 10 000 · 4π2

14.1588735215
= 5353.431 kNmm−1,

the damping can be computed by c = 2ζωnm, with ωn =
√
k/m =

√
5.353 431× 109 N m−1

192 000 kg =

166.98 rad s−1 it is

c = 2 · 0.06 · 166.98 · 192000= 3.847× 106 N sm−1.
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3 Numerical Integration

A single degree of freedom system, with a mass m = 1200 kg, a stiffness k =

50 kNm−1 and a damping ratio ζ = 0.05 is at rest when it is subjected to an
external force p(t):

p(t) =

{
2 kN

(
0.95 + 1

10
t
t0

)
for 0.0 ≤ t ≤ t0 = 0.5 s,

0.0 otherwise. 0

2

0 0.5

(1) Write the exact response for 0 ≤ t ≤ t0 and t0 ≤ t ≤ 2 s using superposition
of the general integral and appropriate particular integrals. (2) Integrate the
equation of motion numerically, using the algorithm of linear acceleration with a
time step h = 0.02 s for 0 ≤ t ≤ 2 s. (3) Plot your results (both the exact
response and the numerical solution) in a meaningful manner. (4) [optional]
Repeat the numerical integration assuming an elasto-plastic spring with a yield
strength fy = 3.2 kN and plot your results.

3.1 Solution

The frequency of free vibration is
ωn =

√
k/m = 6.454 972 rad s−1 and it follows that it is Tn = 0.973 386 919 s.

The damped frequency is ωd = 6.446 898 rad s−1 and the damping coefficient is
c = 2ζωnm = 774.597N sm−1

Analytical Elastic Response

For a polynomial loading of degree 1, the particular integral and its time derivatives
are

ξ(t) = R + St/t0, ξ̇(t) = S/t0, ξ̈(t) = 0.

Substituting ξ, ξ̇, ξ̈ in the equation of motion we have

c S/t0 + k R + k St/t0 = 1900 + 200 t/t0.

Equating the coefficients of the polynomials, substituting the numerical values and
solving for R and S,{

kS = 200

cS/t0 + kR = 1900
⇒

{
S = 4mm
R = 37.876 065mm

.

The general integral is

x1(t) = e−ζωnt (A1 cos(ωdt) + B1 sin(ωdt)) + ξ(t)

and, for a system starting from rest, the initial condition are

x1(0) = A1 + R = 0, ẋ1(0) = −ζωnA1 + ωdB1 + S/t0 = 0

substituting and solving

A1 = −37.876 065mm, B1 = −3.137 082mm,
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and the forced response is

x1(t) = exp−0.323t(−37.876 cos 6.447t − 3.137 sin 6.447t) + 37.876 + 8t.

To find the free response, x2(t) = e−ζωnt (A2 cos(ωdt) + B2 sin(ωdt)) for t0 ≤ t,
we need

x1(t0) = 74.217 946mm = x2(t0) and ẋ1(t0) = −2.275 724mm/s = ẋ2(t0)

The initial conditions, with E = e−ζωnt0 , C = cos(ωdt0) and S = sin(ωdt0), are{
ECA2 + ESB2 = 74.217 946mm,

−E(ωdS + ζωnC)A2 + E(ωdC − ζωnS)B2 = −2.275 724mm/s,

after substituting the numerical values and solving, it is

A2 = −86.600 226mm, B2 = −11.069 365mm.

Analytical EP Response

The yielding displacement is xy = 3200N/50 000Nm−1 = 0.064m = 64mm and
it is reached at time ty = 0.373 887 s (ty is found numerically); the velocity at
yelding is ẋ1(ty ) = 158.394 93mm/s.

During the forced phase, if the velocity doesn’t become negative, the general
integral is

x3 = A3 exp(−ct/m) + B3 + R3
t

t0
+ S3

(
t

t0

)2
.

Substituting the particular integral in the equation of motion

2m

t20
S3 + cR3 +

2c

t0

t

t0
+ fy = 1900 + 200

t

t0

and equating the polynomial coefficients, it is

R3 = −1239.146mm and S3 = 64.550mm.

Writing the initial conditions for t = ty gives
A3 exp(−cty/m) + B3 = x1(ty )− R3 tyt0 − S3

(
ty
t0

)2
− c
mA3 exp(−cty/m) = ẋ1(ty )− R3

t0
− S3

t0

ty
t0

that gives
A3 = −4818.947mm, and B3 = 4740.138mm.

The resulting motion is then

x3(t) = −4818.947e−0.6455t + 258.20t2 − 2478.29t + 4740.14.

The displacements and velocities (note that the velocity remains positive) at
the end of the forced phase are

x3(t0) = 75.872 282mm, ẋ3(t0) = 32.477 544mm/s,
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the general integral in the free response phase is

x4 = A4 exp(−ct/m) + B4 + R4
t

t0

where there is a linear term to take into account the braking effect of the constant
force in the yielded spring.

R4 can be computed from the equation of motion, A4 and B4 by x4(t0) = x3(t0)

and ẋ4(t0) = ẋ3(t0), to have

A4 = −8907.356mm, B4 = 8591.777mm and R4 = −2065.591mm.

To proceed, we have to find the time t = tmax such that x4(tmax) is maximum
and ẋ4(tmax) = 0. This must be done numerically, to find tmax = 0.512 131 s and
, successively, x4(tmax) = xmax = 76.069 025mm.

At t = tmax begins a new elastic response phase, with

x5(t) = e−ζωnt (A5 cos(ωdt) + B5 sin(ωdt)) + (x4(tmax)− xy ),

where the constant term is required to take into account that fS = k · (x − xp) =

k · (x − (x4(tmax)− xy )) = kx − k · 12.069025.
The integration constants A5 and B5 can be determined by the initial conditions

x5(tmax) = xmax = 76.069 025mm and ẋ5(tmax) = 0,

and are then

A5 = −73.935 395mm and B5 = −15.765 549mm.

The free elastic motion is

x1(t) = exp−0.323t(−73.935 cos 6.447t − 15.766 sin 6.447t) + 12.069.

Numerical Integration

The numerical integration was accomplished using two python programs, one to
compute the elastic response and another one to compute the elastoplastic re-
sponse.
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Presentation of the results

First, a graph that presents all of the exact results for both the indefinitely elastic
behaviour and the elastic-perfectly plastic behaviour.
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The EP responses are plotted also outside their interval of definition, so that
it is possible to appreciate the asymptotic behaviour (linear) of the EP responses.
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Here it is a zoom of the time interval around t0, the minimum displacement being
xy , so that one can appreciate the transition between the different EP phases.
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Below, the comparison between the exact responses and the results of the
linear acceleration numerical procedure, with h = 0.02 s.

The continuous lines in green are obtained merging the diverse phases of the
elastic and EP responses, the black dots are placed at the points (tn, xn) obtained
numerically.
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The analytical and the numerical results are indeed in good agreement.
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4 Generalized Coordinates (rigid bodies)

L
L

L LL

A

B

C

D E

F ≡ Ω2

Ω1k

k

cp0 sinωt

The articulated system in figure, composed by

• two rigid bars, (1) ABC and (2) CDEF,

• three fixed constraints, (1) a vertical roller in A, (2) an internal hinge in
C and (3) a hinge in F,

• three deformable constraints, (1) a vertical spring in A, its stiffness k ,
(2) a vertical spring in C, its stiffness k and (3) a horizontal dash pot in
E, its damping coefficient c ,

is excited by a vertical harmonic force applied in D, p(t) = p0 sinωt.

The horizontal part of the bar CDEF has a constant unit mass m, with mL =

m; all the other parts of the system are massless.

Using vc (the vertical displacement of C) as the generalized coordinate

1. compute the generalized parameters m∗, c∗ and k∗,

2. compute the generalized loading p∗(t) and

3. write the equation of dynamic equilibrium.
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4.1 Solution

C D EB

A

θ1 =
vC
L

θ2 =
vC
2L

F ≡ Ω2

Ω1

To write the equation of equilibrium we need the displacements for a small vc,
analyzing the figure we can write

u/vc v/vC θ/vc

A 0 2 —
C 1 1 —
D 1 1/2 1/2L

E 1 0 —

The spring forces are fA = 2kvc and fC = kvc, the dash pot force is fE = cv̇c, the
horizontal component of the inertial force is fx = 2mv̈c, the vertical component is
fy = mv̈c and the inertial couple is w = 2m (2L)

2

12
v̈c
2L = 1

3mLv̈c.
The equation of the virtual works, for a virtual rigid displacement and changing

all the signs,

2mv̈cδvc +mv̈c
δvc
2

+
1

3
mLv̈c

δvc
2L

+

cv̇cδvc + 2kvc2δvc + kvcδvc − p0 sinωt
δvc
2

= 0

or
8

3
mv̈c + cv̇c + 5kvc =

1

2
p0 sinωt
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5 Rayleigh quotient

The undamped 3 DOF system in figure is composed of 2 identical rigid bars, their
masses equal to m, and three identical vertical springs, their stiffnesses equal to
k . Use the free coordinates indicated in the figure.

L L

kk k

m m

u3u2u1

Starting with a trial shape φ =
{

1 1 1
}T

(i.e., u1 = u2 = u3 = Z0 sinωt) give
the successive Rayleigh estimates R00, R01 and R11 of ω2.

Hints:
— the bars have a not negligible rotational inertia, Ji = mL2/12, that you should

take into account,

— the free coordinates are not referred to the centers of mass of the bars, hence the
mass matrix is non-diagonal,

— the simplest way to write the inertial forces on the nodes is using the matrix no-
tation, fI = M ü, where the mass matrix’s coefficients can be deduced comparing
an explicit derivation of the kinetic energy T in terms of u̇i , m and J to the ma-
trix expression T = 1

2
u̇TM u̇ = 1

2

(
m11 u̇

2
1 + · · ·+ (m12 +m21) u̇1u̇2 + · · ·

)
, where

mi j = mj i .

5.1 Solution

The mass and the stiffness matrices are

M =
m

6

2 1 0

1 4 1

0 1 2

 , K = k

1 0 0

0 1 0

0 0 1

 .
The displacements and the velocities can be written (with φ =

{
1 1 1

}
)

u =


1

1

1

Z0 sinωt, u̇ = ω


1

1

1

Z0 cosωt.

The (double of the) maximum value of the deformation energy is

2Vmax = uTK u = 3kZ20 ,

the (double of the) maximum value of the kinetic energy is

2Tmax = u̇TM u̇ = ω2 2mZ20 ,

equating the maximum values

3kZ20 = ω2 2mZ20 ⇒ ω2 =
3

2

k

m
= 1.50

k

m
.
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A better approximation to 2Vmax is given by the work done by the inertial forces

fI = −ω2M φZ0 sinωt = −ω2m


1/2

1

1/2

 Z0 sinωt

and the displacements produced by these forces,

ū = K−1fI = −ω2
m

k


1/2

1

1/2

 Z0 sinωt.

The (double of the) maximum value of the deformation energy is now

2Vmax = f TI ū = ω4
3

2

m2

k
Z20

and, equating to the maximum value of the kinetic energy,

ω4
3

2

m2

k
Z20 = ω2 2mZ20 ⇒ ω2 =

4

3

k

m
= 1.3333

k

m
.

A better approximation to the kinetic energy can be found using

˙̄u = −ω3
m

k


1/2

1

1/2

 Z0 cosωt,

2Tmax = ˙̄uTM ˙̄u = ω6
7

6

m3

k2
Z20

equating the maximum values

ω4
3

2

m2

k
Z20 = ω6

7

6

m3

k2
Z20 ⇒ ω2 =

9

7

k

m
= 1.2857

k

m
.

In the next problem we will find that

ω21 = (3−
√

3)
k

m
= 1.2679

k

m

.

6 3 DOF System

With reference to the system of problem 5, using the position ω20 =
k

m

1. compute the three eigenvalues of the system and the corresponding eigen-
vectors,

2. normalize the eigenvectors with respect to the mass matrix M (it must be
ΨΨΨT MΨΨΨ = m).
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Considering that the system is at rest for t = 0 and is then loaded by a load vector
p(t),

p(t) =
kL

500


0

1

0

 sin(2ω0t),

3. write the three modal equations of motion,

4. integrate the modal equations of motion and write the three equations of
modal displacement, qi = qi(t),

5. find the analytical expression of u3 = u3(t), showing your intermediate re-
sults and

6. plot u3 in the interval 0 ≤ ω0 t ≤ 10.

6.1 Solution

The mass and the stiffness matrices, as in problem 5, are given by

M =
m

6

2.0000 1.0000 0.0000

1.0000 4.0000 1.0000

0.0000 1.0000 2.0000

 , K = k

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

 ,
the equation of free vibrations is1− 13Ω2 −1

6 Ω2 0
−1
6 Ω2 1− 23Ω2 −1

6 Ω2

0 −1
6 Ω2 1− 13Ω2

ψ = 000, with Ω2 =
ω2

k/m
,

the equation of frequencies is

(Ω2)3 − 9(Ω2)2 + 24(Ω2)− 18 = (Ω2 − 3)
(

(Ω2)2 − 6(Ω2) + 6
)

= 0

and the roots are

Ω21 = 3−
√

3, Ω22 = 3, Ω2 = 3 +
√

3.

Substituting Ωi in the equation of frequencies, solving with ψ1j = 1 for ψ2j and
ψ3j and, finally, normalizing with respect to M gives the normalized eigenvector
matrix,

ΨΨΨ =

+0.36602540 +1.22474487 −1.36602540

+1.00000000 +0.00000000 +1.00000000

+0.36602540 −1.22474487 −1.36602540

 .
The particular integral is ξ(t) = x sin 2ω0t, substituting in the equation of

motion

(K − 4ω20M)x sin 2ω0t =
kL

500


0

1

0

 sin 2ω0t,
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hence, removing the time dependency and collecting the unit stiffness k in the left
member it is

k(
K

k
− 4

M

m
) x = k

1− 43 − 23 0

− 23 1− 83 − 23
0 − 23 1− 43

 x = k
L

500


0

1

0


simplifying k

x =
L

500

1− 43 − 23 0

− 23 1− 83 − 23
0 − 23 1− 43

−1
0

1

0

 =
L

500


−2

+1

−2

 .
In modal coordinates (remember that M? ≡ mI, hence M?−1 = I/m), the

steady-state response is

qs-s =
1

m
ΨΨΨTM x =

L

500


−0.36602540

+0.00000000

+1.36602540

 .
The initial rest conditions, in nodal coordinates, are

u0 = −ξ(0) = 000, u̇0 = −ξ̇(0) = −2ω0
L

500


−2

1

−2


and in modal coordinates we have

q0 = 000, q̇0 = −2ω0
1

m
ΨΨΨTM x = ω0

L

500


+0.73205081

−0.00000000

−2.73205081


For each mode the cosine coefficient is ai = 0 and the sine coefficient is

bi =
q̇0,i
ωi
, with ωi = ω0

[
1.1260 1.7321 2.1753

]
it is

b1 =
L

500

0.732

1.126
= 0.650115

L

500
, b2 = 0, b3 = · · · = −1.255926

L

500
.

The modal responses can now be written

q1(t)

L/500
= +0.650115 sin 1.1260ω0t − 0.366025 sin 2ω0t,

q2(t)

L/500
= 0,

q3(t)

L/500
= −− 1.25592606 sin 2.1753ω0t + 1.366025 sin 2ω0t.

Our last point is to write the response for u3(t) =
∑
ψ3i qi(t) (note that the

sum of the steady state contributions to the modal responses is by definition equal
to −2 sin 2ω0t):

u3(t)

L/500
= 0.36602540 · 0.650115 sin 1.1260ω0t + 1.36602540 · 1.25592606 sin 2.1753ω0t − 2 sin 2ω0t

= 0.2379587 sin 1.1260ω0t + 1.715627 sin 2.1753ω0t − 2 sin 2ω0t
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Presentation of the Results

In the figure below, the modal responses q1 and q3, note the beating between the
two sine components in q3, due to the two frequencies being close to each other.
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It is worth to say that q2 ≡ 0 because a symmetric loading vector clearly cannot
excite an antisymmetric mode.
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In the figure below, the displacements u3(t),
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it is apparent that the response of u3, in this case and for this particular loading
frequency, is dominated by the response of the third mode.

Peace of mind

The response of the system to the specified loading was computed also numerically,
using the following, short Python script

from scipy import mat, sin, zeros

K = mat(’1 0 0;0 1 0;0 0 1’)
M = mat(’2 1 0;1 4 1;0 1 2’)/6.0
r = mat(’0;1;0’)
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def load(t): return r*sin(2.0*t) #

h = 0.05 ; duration = 40.0

# linear acceleration coefficients
Flex = (K+6*M/h/h).I ; A = 3.0*M ; V = 6.0*M/h

# initial state
t = 0
x = mat(zeros((3,1))) ; v = mat(zeros((3,1))) ; p = load(0.0)
MI = M.I ; a = MI*(p - K*x)

while t < duration+h/2:
print "%12.9f" % t, ’ ’.join(["%12.9f" % x_i for x_i in x])
t = t + h
dp = load(t) - p
dx = Flex*(dp + A*a + V*v)
dv = 3.0*dx/h - 3*v - a*h/2.0
# update
x = x + dx ; v = v + dv ; p = p + dp ; a = MI*(p-K*x)

The output of the program (here the first lines)

0.000000000 0.000000000 0.000000000 0.000000000
0.050000000 -0.000041493 0.000083091 -0.000041493
0.100000000 -0.000330912 0.000663273 -0.000330912

was saved into the file num.dat and finally plotted by the following script,

w1 = 1.126 ; w2 =sqrt(3) ; w3 = 2.1753 ; w = 2.0
x1 = 0.2379587 ; x2 = 0 ; x3 = 1.71562701 ; xs = -2
u3(x) = x1*sin(w1*x) + x3*sin(w3*x) + xs*sin(w*x)

set output "x3_exact+num.tex"
set xrange [0:40]
plot u3(x)/500 lt 1 lw 3 lc rgb ’#00dd66’ t "\\K Exact", \

"num.dat" u 1:($4/500) every 2 lt 0 lw 1 t "\\K Numerical"

set output "x3_short.tex"
set xrange [0:6]
plot u3(x)/500 lt 1 lw 3 lc rgb ’#00dd66’ t "\\K Exact", \

"num.dat" u 1:($4/500) every 1 lt 0 lw 1 t "\\K Numerical"

aside with the analytical solution
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Here it is the graph over 40 adimensional time units, as wellas in the previous
plots (note that i haven’t normilezed with respect to 500 in this case)
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the solutions, obtained by completely different methods, are in very good agree-
ment.

h h h h b b b X X X X c c c g g g f

If you have plotted the response over a shorter time interval (losing the appreciation
for the quasi-resonant behaviour) here it is the same response function and the
same data plotted over 6 adimansional time units.
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