
1 Free Response

A 1 storey building can be considered a SDOF system. Its top is displaced
by means of a hydraulic jack, the applied force is 90kN, and the measured
displacement is x0 = 5.0mm.

The applied force is istantaneously released, so that the building oscillates
in free response, starting from initial conditions x(0) = x0, ẋ(0) = 0. Note
that x0 is a maximum, as the velocity at time t = 0 is equal to zero.

The maximum displacement after the first cycle of oscillation is measured,
and it is found that x1 = 4.0mm, at time t = 1.40s.

We want to determine the dynamical parameters of the system, and in par-
ticular its damping ratio.

1.1 Determination of the Dynamical Parameters

First, we can derive the elastic stiffness relating the applied force and the initial
displacement,

k =
F

x0
=

90, 000N

0.005m
= 18.0

MN

m
.

Next, with the understanding that the damped period is TD = 1.4s, we find
the damped frequency,

ωD =
2π

TD
=

6.2832rad

1.40s
= 4.488

rad

s
.

The logarithmic decrement equation, when written for two consecutive max-
ima of the response, is

log(
xn
xn+1

) = 0.223143551314 = δ =
2πζ√
1− ζ2

.

Solving for ζ and substituting δ = log 1.25 gives

ζ =
δ√

(2π)2 + δ2
= 3.54920237062%.

As an alternative, one can use an iterative solution, starting with ζ0 = 0 and
writing

ζi+1 =
( δ

2π

)√
1− ζ2i .

Using this procedure, the successive approximations are

ζ1 =3.55143992107%

ζ2 =3.54919954758%

ζ3 =3.54920237420%

ζ4 =3.54920237064%

Of course, from an engineering point of view the result ζ1 = 3.55% is good
enough. The determination of the mass is left to the interested reader.
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i ωi (rad/s) ρi (µm) ϑi (deg) cosϑi sinϑ

1 16.0 183. 15.0 0.966 0.259
2 25.0 368. 55.0 0.574 0.819

Table 1: Experimental data

2 Dynamic Testing

We want to measure the dynamical characteristics of a SDOF building system,
i.e., its mass, its damping coefficient and its elastic stiffness.

To this purpose, we demonstrate that is sufficient to measure the steady-state
response of the SDOF when subjected to a number of harmonic excitations with
different frequencies.

The steady-state response is characterized by its amplitude,ρ and the phase
delay, ϑ, as in xSS(t) = ρ sin(ωt− ϑ).

E.g., we excite our stucture with a vibrodyne that exerts a harmonic force
p(t) = p0 sinωt, with p0 = 2.224kN, and measure the steady-state response
parameters for two different input frequencies, as detailed in table 1.

2.1 Determination of the Dynamical Parameters

We start from the equation for steady-state response amplitude,

ρ =
p0
k

1√
(1− β2)2 + (2ζβ)2

where we collect (1− β2)2 in the radicand in the right member,

ρ =
p0
k

1

1− β2

1√
1 + [2ζβ/(1− β2)]2

but the equation for the phase angle, tanϑ = 2ζβ
1−β2 , can be substituted in the

radicand, so that, using simple trigonometric identities, we find that

ρ =
p0
k

1

1− β2

1√
1 + tan2 ϑ

=
p0
k

cosϑ

1− β2
.

With k(1 − β2) = k − k ω2

k/m = k − ω2m and using a simple rearrangement,

we have
k − ω2m =

p0
ρ

cosϑ.

Substituting the data from table 1 into the previous equation for i = 1, 2
we can write, using matrix notation, a system of two algebraic equations in the
unknown k and m, [

1 −162

1 −252

]{
k
m

}
= p0

{ 0.966
183×10−6

0.574
368×10−6

}
,

that once solved gives us the values k = 17.48 MN/m and m = 22415 kg, while
the natural frequency is ω =

√
k/m = 27.924rad/s.
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Figure 1: vertical profile of bridge surface
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Figure 2: simplified model of the vehicle

Using the previously established relationship for cosϑ, we can write cosϑ =
k(1 − β2) ρp0 , from the equation of the phase angle (see above), we can write

cosϑ = 1−β2

2ζβ sinϑ, and finally

ρk

p0
=

sinϑ

2ζβ
, hence ζ =

p0
ρk

sinϑ

2β
,

and substituting the values for, e,g,, i = 1 gives ζ = 15.7%. Substituting the
values for i = 2 offers a result that is equivalent from an engineering point of
view.

3 Vibration Insulation, Displacements

A vehicle with mass m = 1800kg travels at constant velocity v = 72km/h over
a very long bridge; the bridge has a constant span L = 12m and, due to viscous
displacements, its surface is no more horizontal (see figure 1). The vertical
profile of the bridge surface can be approximated by a trigonometric function,

yg = yg0 cos(
2πx

L
),

where yg0 = δmax

2 = 3.0cm, δ = 6.0cm being the maximum deflection measured
between the supports and the midspan.

The vehicle can be considered as a single mass, connected to the road surface
by a suspension system composed by a spring and a viscous damper . The
stiffness is k = 225kN/m, and the damping ratio is ζ = 40%.

It is required the maximum value of the total vertical displacement of the
vehicle body at steady state.

3.1 Determination of the total steady state displacement

The point of contact between the suspension and the road, assuming a constant
vehicle velocity, goes up and down with a period T that is equal to the time
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that the vehicle uses to go from one maximum to the successive maximum, that
is the time it takes to travel L = 12m.

The vehicle velocity is

v =
72000m

3600s
= 20m/s,

and the excitation period is hence

T =
12m

20m/s
= 0.6s.

The natural period of excitation of the suspension-vehicle system is

Tn =
2π

ωn
=

2π√
k/m

= 0.562s

and the excitation frequency ratio is

β =
Tn
T

= 0.9366

.
The transmittance ratio, TR, is defined as

TR =
yTOT

yg0
=

√
1 + (2ζβ)2

(1− β2)2 + (2ζβ)2
= 1.647,

so that the maximum displacement is

yTOT = 1.647× 3.0cm = 4.9371cm.

For ζ = 0.0, TR is equal to?

4 Vibration Insulation, Transmitted Forces.

A rotating machine has a total mass m = 90, 000kg; when it is in operation the
machine transmits to its rigid support a harmonic force

p(t) = p0 sin(2πf0t), with p0 = 2kN and f0 = 40Hz.

Due to the excessive level of vibrations induced in the building in which
the machine is housed, it is required that the transmitted force is reduced to a
maximum value of 400N. This will be achieved by means of a suspension system
that will consist of four equal springs of elastic constant k.

4.1 Maximum stiffness of the damping system

In this case the required maximum value of the transmissibility ratio is

TR =
fT
po

=
400N

2000N
= 0.20,
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Figure 3: IE design chart
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and the required insulation efficiency is

IE = 1− TR = 0.80

From the design chart in figure 3, for an excitation frequency of 40Hz and
IE = 0.80, we see the following requirement for the static displacement,

∆static = W/ktotal ≥ 0.095cm = 0.00095m.

Solving for k = ktotal/4,

k ≤ 90, 000× 9.81

4× 0.00095
N/m = 232.34MN/m.

Using a different approach, for an undamped system one can write

TR =
1

β2 − 1
, hence β =

√
1 + TR

TR
= 2.45

deriving ωn = (2πf0)/2.0 = 102.64rad/s, and

k =
ktotal

4
=

1

4
mω2

n =
90, 000× 10, 527.6

4
= 236.87

MN

m
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