
Exact integration of the equation of motion for an
elastoplastic oscillator

April 9, 2013

We consider an oscillator with mass m = 1000kg, stiffness k = 40000kN/m
and a damping ratio ζ = 3% and yielding limit fy = 2500N, loaded by a half-sine
impulse,

p(t) =

{
P0 sin(πt/t1), 0 ≤ t ≤ t1,

0 otherwise

where P0 = 6000N and t1 = 0.3s.
In this paper we discuss a computer program written to integrate the equation

of motion of the particular system described above, where I say particular system
because the execution branches are taken by prior knowledge of the behaviour of
the system, and not using tests in a step-by step fashion, as it should be in a
general solution.

The code, denoted by the different background, is written in the programming
language python.

python is a very simple programming language, so simple that lots of stuff are
not directly available but reside in external libraries or modules. The standard
libraries, on the other hand, cover a large spectrum of necessities and there are
also a great number of third party modules (last week we used a third party library,
the pylab module)

When we need something outside the base language, we have to know the
module that provides our requirements and import some name from it. In our
case, we need the usual mathematical functions, so we start yhe program with the
statement

from math import ∗

Importing the asterisk from the module math means to importeverything, that
is all names that are defined in the module; most names refer to functions, like sin
or cos, but in math are defined also constants like pi = π.

It is customary to write first all the imports, to make apparent what external
modules the program requires; the form we used for our import was not as idiomatic
as from math import sin, cos, exp,sqrt, pi that clarifies exactly what names we have
imported from the math module.

Another variation on import, the most explicit one..., is import math and
in this case we must prefix every references to the objects from math, as in
pi2 = math.pi∗2 in this case it becomes very simple to asses the origin of any
object that is used in our code.

After this aside on importing objects’ names in our code, we define a function
that returns two functions, namely the elastic displacement and the elastic velocity
of a sdof, subjected to an assigned load and given initial conditions.

def r e s p e l a s (m, c , k , cC , cS ,w, F , x0 , v0) :

where m,c,k are the SDOF’s characteristics, x0,v0 are the initial conditions and
cC,cS,w, F define the loading, p(t) = cC cos(wt) + cS sin(wt) + F . Note that cC

and cS must be forces, as well as the constant force F

wn2=k/m ; wn=sq r t (wn2) ; beta=w/wn
z=c /(2∗m∗wn) ; wd=wn∗ s q r t (1−z∗z)

After computing the dynamic parameters, we compute the coefficients in the par-
ticular integral

cs i (t) = R s in (w t) + S cos (w t) + D
det=(1.−beta ∗∗2)∗∗2+(2∗ beta ∗z)∗∗2
R=((1−beta ∗∗2)∗ cS + (2∗ beta ∗z)∗cC)/ det /k
S=((1−beta ∗∗2)∗cC − (2∗ beta ∗z)∗ cS)/ det /k
D=F/k

Now the constants in the general integral, using the initial conditions,

x (0) = 1 ∗ (A∗1 + B∗0) + R∗0 + S∗1 + D = x0
A=x0−S−D
v (0) = wd B − z wn A + w R = v0
B=(v0+z∗wn∗A−w∗R)/wd

and using the general and the particular integral constants, we can define the two
functions that compute the response (displacement and velocity) for t > 0.

def x (t) :
return (exp(−z∗wn∗ t)∗ (A∗ cos (wd∗ t)+B∗ s i n (wd∗ t))

+R∗ s i n (w∗ t)+S∗ cos (w∗ t)+D)
def v (t) :

return (−z∗wn∗exp(−z∗wn∗ t)∗ (A∗ cos (wd∗ t)+B∗ s i n (wd∗ t))
+wd∗exp(−z∗wn∗ t)∗ (B∗ cos (wd∗ t)−A∗ s i n (wd∗ t))
+w∗(R∗ cos (w∗ t)−S∗ s i n (w∗ t)))

Finally, we return to the caller these two functions! In python, functions are
objects like integers, floats, and other types of variables, and can be binded to a
name, e.g., s=sin; print s(3.14/2) prints 1.0.

return x , v

Next, we define another function defining functions, that returns the displacement
and velocity during the yielding phase. Examining the code you could take a guess
at the particular and general integral to the equation mẍ + cẋ = cC cos(wt) +
cS sin(wt) + F .

def r e s p y i e l d (m, c , cC , cS ,w, F , x0 , v0) :
cs i (t) = R s in (w t) + S cos (w t) + \ a lpha t
x (t) = A exp(−c t /m) + B +
+ R sin (w t) + S cos (w t) + alpha t
v (t) = − c A/m exp(−c t /m) +
+ w R cos (w t) − w S s in (w t) + alpha
alpha=F/c
det=w∗∗2∗(c∗∗2+w∗∗2∗m∗∗2)
R=(+w∗c∗cC−w∗w∗m∗cS)/ det ; S=(−w∗c∗cS−w∗w∗m∗cC)/ det
v (0) = −c A / m + w R + alpha = v0
A=m∗(w∗R+alpha−v0)/ c
x (0) = A + B + S = x0
B=x0−A−S
def x (t) :

return (A∗exp(−c∗ t /m) + B
+ R∗ s i n (w∗ t) + S∗ cos (w∗ t) + alpha ∗ t)

def v (t) :
return (−c∗A∗exp(−c∗ t /m)/m

+ w∗R∗ cos (w∗ t) − w∗S∗ s i n (w∗ t) + alpha)
return x , v

The next function we’re going to define is a helper function, that returns a root t∗

using the simple method of bisection, f(t∗) = f0:

def b i s e c t (f , root , x0 , x1) :
h = (x0 + x1)/2 . 0
fh = f (h) − root
i f abs (fh) < 1e−8 : return h
f0 = f (x0) − root
i f f 0 ∗ fh > 0 :

return b i s e c t (f , root , h , x1)
else :

return b i s e c t (f , root , x0 , h)

The last block is about output, a sad necessity in most programs... we define a
function to tabulate a function f(t− t1) over an interval t1 to t2 using n+ 1 points:

def tabu la t e (f , t 1 , t 2 , n s t ep s) :
s t ep = (t 2 − t 1)/ n s t ep s
for i in range (n s t ep s +1):

tau = i ∗ s tep
print t 1+tau , f (tau)

return

Having defined all the building blocks, we set the sdof parameters,

mass=1000. # kg
k=40000. # N/m
ze ta =0.03 # damping r a t i o
damp=2∗ze ta ∗mass∗ s q r t (k/mass)
fy =2500. # N, the y i e l d i n g f o r c e in the spr ing
xy=fy /k # m, the d i sp lacement o f 1 s t y i e l d

and the characteristics of the loading

t1=0.3 # s
w=pi / t1 # rad/s
Po=6000. # N

To compute the response functions and start our computation we need the initial
elastic response functions and, with null initial conditions, we set

x0=0.0 # m
v0=0.0 # m/s
x next , v next=r e s p e l a s (mass , damp , k , 0 . 0 ,Po ,w, 0 . 0 , x0 , v0)

Before starting, we compute the time ty for which the yield take place,

t y i e l d=b i s e c t (x next , xy , 0 . 0 , t1 , 1)

Because ty < t1, I decided the time interval (0, ty) where the response is linear.
To repeat the concept, in every program it is sadly necessary to generate some
output. Here I print 101 time-displacement points between the start of excitation
and yielding.

tabu la t e (x next , 0 . 0 , t ye ld , 100)

At this point, t = ty, the spring is yielding: we find the new initial conditions,

x0 = x next (t y − 0 . 0) ; v0 = v next (t y − 0 . 0)

and the new load coefficients, with τ = t−ty we have that p(τ) = (cos(ωty) sin(τ)+
sin(ωty) cos(τ))P0

cS = cos (w∗ t y)∗Po
cC = s in (w∗ t y)∗Po

and the new response functions.

x next , v next = r e s p y i e l d (mass , damp , cC , cS ,w, −fy , x0 , v0)

Note that the constant force in the function call above is opposite to the yielding
force, as the yielded spring continues to exert the yielding force on the mass.

The upper limit of validity of this response is the smaller time between t1,
where the load changes, and tv=0, where we could go back in the elastic phase. In
this case, the interval of validity is (ty, t1), as I found by inspection.

Let’s print some points in this interval,

tabu la t e (x next , t ye ld , t 1 , 100)

Now, t = t1 and p ≡ 0, we must change the response functions because the
external load changed.

cS = 0 .0 ; cC = 0 .0
x0 = x next (t 1 − t y)
v0 = v next (t 1 − t y)

x next , v next = r e s p y i e l d (mass , damp , cC , cS , w, −fy , x0 , v0)

Now, the spring is yielded and the velocity is positive, we’ll remain in this
yielding phase until the velocity equals zero, so we find this phase change time

t2=t1+b i s e c t (v next , 0 . 0 , 0 , 0 . 3 , 1 . 0)

having found t2, we print 101 points in this interval

tabu la t e (x next , t 1 , t 2 , 100)

Now the velocity is 0.0, going back to elastic behaviour... note the use of a constant
force to model the permanent displacement.

x0 = x next (t 2 − t 1) ; v0 = 0 .0
x next , v next = r e s p e l a s (mass , damp , k , 0 . 0 , 0 . 0 ,w, k∗x0−fy , x0 , v0)

Finally, we print some points following the return of the sdof in the elastic phase.

tabu la t e (x next , t 2 , 4 . 0 , 200)

A similar program can be written to compute the indefinitely elastic response,
the results are in the following figures, the first one shows in more detail the yielding
phase, highlighting ty ≈ 0.203s and xy = 0.0625cm, the time and displacement of
first yielding, the second one highlighting the differences in the free response,
namely a) the permanent yielding displacement and b) the different amplitudes of
the vibrations, associated with the higher dissipation of energy that takes place in
the yielded oscillator.

1

-0.15

-0.1

-0.05

 0

 0.05
 0.0625

 0.1

 0.15

 0.2

 0.25

 0 0.203 0.4 0.6 0.8 1

D
is

pl
ac

em
en

t,
m

et
re

s

Time, seconds

m=1000kg, k=40kN/m, ζ=3%, fy=2.5kN, p=x<t1?P sin(pi t/t1):0, P=6kN, t1=0.3s

Elastic response
E-Plastic response

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
is

pl
ac

em
en

t,
m

et
re

s

Time, seconds

m=1000kg, k=40kN/m, ζ=3%, fy=2.5kN, p=x<t1?P sin(pi t/t1):0, P=6kN, t1=0.3s

Elastic response
E-Plastic response

2

