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Introductory Remarks

Until now our SDOF’s were described as composed by a
single mass connected to a fixed reference by means of a
spring and a damper.
While the mass-spring is a useful representation, many
different, more complex systems can be studied as SDOF
systems, either exactly or under some simplifying assumption.

1. SDOF rigid body assemblages, where flexibility is
concentrated in a number of springs and dampers, can
be studied, e.g., using the Principle of Virtual
Displacements and the D’Alembert Principle.

2. simple structural systems can be studied, in an
approximate manner, assuming a fixed pattern of
displacements, whose amplitude (the single degree of
freedom) varies with time.
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Further Remarks on Rigid Assemblages

Today we restrict our consideration to plane, 2-D systems.
In rigid body assemblages the limitation to a single shape of
displacement is a consequence of the configuration of the
system, i.e., the disposition of supports and internal hinges.
When the equation of motion is written in terms of a single
parameter and its time derivatives, the terms that figure as
coefficients in the equation of motion can be regarded as the
generalised properties of the assemblage: generalised mass,
damping and stiffness on left hand, generalised loading on
right hand.

m?ẍ+ c?ẋ+ k?x = p?(t)
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Further Remarks on Continuous Systems

Continuous systems have an infinite variety of deformation
patterns.
By restricting the deformation to a single shape of varying
amplitude, we introduce an infinity of internal contstraints
that limit the infinite variety of deformation patterns, but
under this assumption the system configuration is
mathematically described by a single parameter, so that

I our model can be analysed in exactly the same way as a
strict SDOF system,

I we can compute the generalised mass, damping, stiffness
properties of the SDOF system.



Generalized
SDOF’s

Giacomo Boffi

Introductory
Remarks

Assemblage of
Rigid Bodies

Continuous
Systems

Vibration
Analysis by
Rayleigh’s
Method

Selection of
Mode Shapes

Refinement of
Rayleigh’s
Estimates

Final Remarks on Generalised SDOF Systems

From the previous comments, it should be apparent that
everything we have seen regarding the behaviour and the
integration of the equation of motion of proper SDOF
systems applies to rigid body assemblages and to SDOF
models of flexible systems, provided that we have the means
for determining the generalised properties of the dynamical
systems under investigation.
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Assemblages of Rigid Bodies

I planar, or bidimensional, rigid bodies, constrained to
move in a plane,

I the flexibility is concentrated in discrete elements,
springs and dampers,

I rigid bodies are connected to a fixed reference and to
each other by means of springs, dampers and smooth,
bilateral constraints (read hinges, double pendulums and
rollers),

I inertial forces are distributed forces, acting on each
material point of each rigid body, their resultant can be
described by

I a force applied to the centre of mass of the body,
proportional to acceleration vector and total mass
M =

∫
dm

I a couple, proportional to angular acceleration and the
moment of inertia J of the rigid body,
J =

∫
(x2 + y2)dm.
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Rigid Bar

x

G

L

Unit mass m̄ = constant,
Length L,

Centre of Mass xG = L/2,

Total Mass m = m̄L,

Moment of Inertia J = m
L2

12
= m̄

L3

12
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Rigid Rectangle

G

y

a

b

Unit mass γ = constant,
Sides a, b

Centre of Mass xG = a/2, yG = b/2

Total Mass m = γab,

Moment of Inertia J = m
a2 + b2

12
= γ

a3b+ ab3

12
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Rigid Triangle

For a right triangle.

y

G

a

b

Unit mass γ = constant,
Sides a, b

Centre of Mass xG = a/3, yG = b/3

Total Mass m = γab/2,

Moment of Inertia J = m
a2 + b2

18
= γ

a3b+ ab3

36
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Rigid Oval

When a = b = D = 2R the oval is a circle.

x

y

a
b

Unit mass γ = constant,
Axes a, b

Centre of Mass xG = yG = 0

Total Mass m = γ
πab

4
,

Moment of Inertia J = m
a2 + b2

16
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trabacolo1

c k c k2 211

N

m  ,  J2 2

p(x,t) = P x/a f(t)

a 2 a a a a a

The mass of the left bar is m1 = m̄ 4a and its moment of
inertia is J1 = m1

(4a)2

12 = 4a2m1/3.
The maximum value of the external load is
Pmax = P 4a/a = 4P and the resultant of triangular load is
R = 4P × 4a/2 = 8Pa
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Forces and Virtual Displacements

c1Ż
4

m1Z̈
2

3k1Z
4

c2Ż
2m2Z̈

3
kZ
3

NZ(t)

J2Z̈
3a

8Pa f(t)
J1Z̈
4a

δZ
4

δZ
2

3 δZ
4

δZ 2 δZ
3

δZ
3

δu

δθ2 = δZ/(3a)δθ1 = δZ/(4a)

u = 7a−4a cos θ1−3a cos θ2, δu = 4a sin θ1δθ1+3a sin θ2δθ2

δθ1 = δZ/(4a), δθ2 = δZ/(3a)

sin θ1 ≈ Z/(4a), sin θ2 ≈ Z/(3a)

δu =
(

1
4a + 1

3a

)
Z δZ = 7

12aZ δZ



Generalized
SDOF’s

Giacomo Boffi

Introductory
Remarks

Assemblage of
Rigid Bodies

Continuous
Systems

Vibration
Analysis by
Rayleigh’s
Method

Selection of
Mode Shapes

Refinement of
Rayleigh’s
Estimates

Forces and Virtual Displacements

c1Ż
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Principle of Virtual Displacements

c1Ż
4

m1Z̈
2

3k1Z
4

c2Ż
2m2Z̈

3
kZ
3

NZ(t)

J2Z̈
3a

8Pa f(t)
J1Z̈
4a

δZ
4

δZ
2

3 δZ
4

δZ 2 δZ
3

δZ
3

δu

δθ2 = δZ/(3a)δθ1 = δZ/(4a)

The virtual work of the Inertial forces:

δWI = −m1
Z̈

2

δZ

2
− J1

Z̈

4a

δZ

4a
−m2

2Z̈

3

2δZ

3
− J2

Z̈

3a

δZ

3a

= −
(
m1

4
+ 4

m2

9
+

J1

16a2
+

J2

9a2

)
Z̈ δZ

δWD = −c1
Ż

4

δZ

4
−−c2Z δZ = − (c2 + c1/16) Ż δZ

δWS = −k1
3Z

4

3δZ

4
− k2

Z

3

δZ

3
= −

(
9k1

16
+
k2

9

)
Z δZ

δWExt = 8Pa f(t)
2δZ

3
+N

7

12a
Z δZ
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2

δZ

2
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Z̈
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−m2

2Z̈

3
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− J2
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9
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J1
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Ż

4

δZ

4
−−c2Z δZ = − (c2 + c1/16) Ż δZ
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Principle of Virtual Displacements

For a rigid body in condition of equilibrium the total virtual
work must be equal to zero

δWI + δWD + δWS + δWExt = 0

Substituting our expressions of the virtual work contributions
and simplifying δZ, the equation of equilibrium is(

m1

4
+ 4

m2

9
+

J1

16a2
+

J2

9a2

)
Z̈+

+ (c2 + c1/16) Ż +

(
9k1

16
+
k2

9

)
Z =

8Pa f(t)
2

3
+N

7

12a
Z
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Principle of Virtual Displacements

Collecting Z and its time derivatives give us

m?Z̈ + c?Ż + k?Z = p?f(t)

introducing the so called generalised properties, in our
example it is

m? =
1

4
m1 +

4

9
9m2 +

1

16a2
J1 +

1

9a2
J2,

c? =
1

16
c1 + c2,

k? =
9

16
k1 +

1

9
k2 −

7

12a
N,

p? =
16

3
Pa.

It is worth writing down
the expression of k?: k? =

9k1

16
+
k2

9
− 7

12a
N
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Principle of Virtual Displacements

Collecting Z and its time derivatives give us

m?Z̈ + c?Ż + k?Z = p?f(t)

introducing the so called generalised properties, in our
example it is

m? =
1

4
m1 +

4

9
9m2 +

1

16a2
J1 +

1

9a2
J2,

c? =
1

16
c1 + c2,

k? =
9

16
k1 +

1

9
k2 −

7

12a
N,

p? =
16

3
Pa.

It is worth writing down
the expression of k?: k? =

9k1

16
+
k2

9
− 7

12a
N

Geometrical stiffness
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Let’s start with an example...

Consider a cantilever, with varying properties m̄ and EJ ,
subjected to a load that is function of both time t and
position x,

p = p(x, t).

The transverse displacements v will be function of time and
position,

v = v(x, t)

 H 

x m̄ = m̄(x)

N

EJ = EJ(x)v(x, t)

p(x, t)
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... and an hypothesis

To study the previous problem, we introduce an approximate
model by the following hypothesis,

v(x, t) = Ψ(x)Z(t),

that is, the hypothesis of separation of variables
Note that Ψ(x), the shape function, is adimensional, while
Z(t) is dimensionally a generalised displacement, usually
chosen to characterise the structural behaviour.
In our example we can use the displacement of the tip of the
chimney, thus implying that Ψ(H) = 1 because

Z(t) = v(H, t) and
v(H, t) = Ψ(H)Z(t)
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To study the previous problem, we introduce an approximate
model by the following hypothesis,

v(x, t) = Ψ(x)Z(t),

that is, the hypothesis of separation of variables
Note that Ψ(x), the shape function, is adimensional, while
Z(t) is dimensionally a generalised displacement, usually
chosen to characterise the structural behaviour.
In our example we can use the displacement of the tip of the
chimney, thus implying that Ψ(H) = 1 because

Z(t) = v(H, t) and
v(H, t) = Ψ(H)Z(t)
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Principle of Virtual Displacements

For a flexible system, the PoVD states that, at equilibrium,

δWE = δWI.

The virtual work of external forces can be easily computed,
the virtual work of internal forces is usually approximated by
the virtual work done by bending moments, that is

δWI ≈
∫
M δχ

where χ is the curvature and δχ the virtual increment of
curvature.
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δWE

The external forces are p(x, t), N and the forces of inertia fI;
we have, by separation of variables, that δv = Ψ(x)δZ and
we can write

δWp =

∫ H

0
p(x, t)δv dx =

[∫ H

0
p(x, t)Ψ(x) dx

]
δZ = p?(t) δZ

δWInertia =

∫ H

0
−m̄(x)v̈δv dx =

∫ H

0
−m̄(x)Ψ(x)Z̈Ψ(x) dx δZ

=

[∫ H

0
−m̄(x)Ψ2(x) dx

]
Z̈(t) δZ = m?Z̈ δZ.

The virtual work done by the axial force deserves a separate
treatment...
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δWN

The virtual work of N is δWN = Nδu where δu is the
variation of the vertical displacement of the top of the
chimney.
We start computing the vertical displacement of the top of
the chimney in terms of the rotation of the axis line,
φ ≈ Ψ′(x)Z(t),

u(t) = H −
∫ H

0
cosφ dx =

∫ H

0
(1 − cosφ) dx,

substituting the well known approximation cosφ ≈ 1 − φ2

2 in
the above equation we have

u(t) =

∫ H

0

φ2

2
dx =

∫ H

0

Ψ′2(x)Z2(t)

2
dx

hence

δu =

∫ H

0
Ψ′2(x)Z(t)δZ dx =

∫ H

0
Ψ′2(x) dx ZδZ

and

δWN =

[∫ H

0
Ψ′2(x) dx N

]
Z δZ = k?G Z δZ
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δWInt

Approximating the internal work with the work done by
bending moments, for an infinitesimal slice of beam we write

dWInt =
1

2
Mv”(x, t) dx =

1

2
MΨ”(x)Z(t) dx

with M = EJ(x)v”(x)

δ(dWInt) = EJ(x)Ψ”2(x)Z(t)δZ dx

integrating

δWInt =

[∫ H

0
EJ(x)Ψ”2(x) dx

]
ZδZ = k? Z δZ
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Remarks

I the shape function must respect the geometrical
boundary conditions of the problem, i.e., both

Ψ1 = x2 and Ψ2 = 1 − cos
πx

2H

are accettable shape functions for our example, as
Ψ1(0) = Ψ2(0) = 0 and Ψ′1(0) = Ψ′2(0) = 0

I better results are obtained when the second derivative of
the shape function at least resembles the typical
distribution of bending moments in our problem, so that
between

Ψ′′1 = constant and Ψ2” =
π2

4H2
cos

πx

2H

the second choice is preferable.
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I better results are obtained when the second derivative of
the shape function at least resembles the typical
distribution of bending moments in our problem, so that
between

Ψ′′1 = constant and Ψ2” =
π2

4H2
cos

πx

2H

the second choice is preferable.



Generalized
SDOF’s

Giacomo Boffi

Introductory
Remarks

Assemblage of
Rigid Bodies

Continuous
Systems

Vibration
Analysis by
Rayleigh’s
Method

Selection of
Mode Shapes

Refinement of
Rayleigh’s
Estimates

Remarks

I the shape function must respect the geometrical
boundary conditions of the problem, i.e., both

Ψ1 = x2 and Ψ2 = 1 − cos
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are accettable shape functions for our example, as
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Example

Using Ψ(x) = 1 − cos πx
2H , with m̄ = constant and

EJ = constant, with a load characteristic of seismic
excitation, p(t) = −m̄v̈g(t),

m? = m̄

∫ H

0
(1 − cos

πx

2H
)2 dx = m̄(

3

2
− 4

π
)H

k? = EJ
π4

16H4

∫ H

0
cos2 πx

2H
dx =

π4

32

EJ

H3

k?G = N
π2

4H2

∫ H

0
sin2 πx

2H
dx =

π2

8H
N

p?g = −m̄v̈g(t)
∫ H

0
1 − cos

πx

2H
dx = −

(
1 − 2

π

)
m̄H v̈g(t)
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Vibration Analysis

I The process of estimating the vibration characteristics of
a complex system is known as vibration analysis.

I We can use our previous results for flexible systems,
based on the SDOF model, to give an estimate of the
natural frequency ω2 = k?/m?

I A different approach, proposed by Lord Rayleigh, starts
from different premises to give the same results but the
Rayleigh’s Quotient method is important because it
offers a better understanding of the vibrational
behaviour, eventually leading to successive refinements
of the first estimate of ω2.
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Vibration Analysis

I The process of estimating the vibration characteristics of
a complex system is known as vibration analysis.

I We can use our previous results for flexible systems,
based on the SDOF model, to give an estimate of the
natural frequency ω2 = k?/m?

I A different approach, proposed by Lord Rayleigh, starts
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Rayleigh’s Quotient Method

Our focus will be on the free vibration of a flexible,
undamped system.

I inspired by the free vibrations of a proper SDOF we write

Z(t) = Z0 sinωt and v(x, t) = Z0Ψ(x) sinωt,

I the displacement and the velocity are in quadrature:
when v is at its maximum v̇ = 0 (hence V = Vmax,
T = 0) and when v = 0 v̇ is at its maximum (hence
V = 0, T = Tmax,

I disregarding damping, the energy of the system is
constant during free vibrations,

Vmax + 0 = 0 + Tmax
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Z(t) = Z0 sinωt and v(x, t) = Z0Ψ(x) sinωt,

I the displacement and the velocity are in quadrature:
when v is at its maximum v̇ = 0 (hence V = Vmax,
T = 0) and when v = 0 v̇ is at its maximum (hence
V = 0, T = Tmax,

I disregarding damping, the energy of the system is
constant during free vibrations,
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Rayleigh’ s Quotient Method

Now we write the expressions for Vmax and Tmax,

Vmax =
1

2
Z2

0

∫
S
EJ(x)Ψ′′2(x) dx,

Tmax =
1

2
ω2Z2

0

∫
S
m̄(x)Ψ2(x) dx,

equating the two expressions and solving for ω2 we have

ω2 =

∫
S EJ(x)Ψ′′2(x) dx∫
S m̄(x)Ψ2(x) dx

.

Recognizing the expressions we found for k? and m? we
could question the utility of Rayleigh’s Quotient...
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Rayleigh’s Quotient Method

I in Rayleigh’s method we know the specific time
dependency of the inertial forces

fI = −m̄(x)v̈ = m̄(x)ω2Z0Ψ(x) sinωt

fI has the same shape we use for displacements.
I if Ψ were the real shape assumed by the structure in free

vibrations, the displacements v due to a loading
fI = ω2m̄(x)Ψ(x)Z0 should be proportional to Ψ(x)
through a constant factor, with equilibrium respected in
every point of the structure during free vibrations.

I starting from a shape function Ψ0(x), a new shape
function Ψ1 can be determined normalizing the
displacements due to the inertial forces associated with
Ψ0(x), fI = m̄(x)Ψ0(x),

I we are going to demonstrate that the new shape
function is a better approximation of the true mode
shape
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fI = −m̄(x)v̈ = m̄(x)ω2Z0Ψ(x) sinωt

fI has the same shape we use for displacements.
I if Ψ were the real shape assumed by the structure in free

vibrations, the displacements v due to a loading
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Selection of mode shapes

Given different shape functions Ψi and considering the true
shape of free vibration Ψ, in the former cases equilibrium is
not respected by the structure itself.
To keep inertia induced deformation proportional to Ψi we
must consider the presence of additional elastic constraints.
This leads to the following considerations

I the frequency of vibration of a structure with additional
constraints is higher than the true natural frequency,

I the criterium to discriminate between different shape
functions is: better shape functions give lower estimates
of the natural frequency, the true natural frequency
being a lower bound of all estimates.
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Selection of mode shapes

Given different shape functions Ψi and considering the true
shape of free vibration Ψ, in the former cases equilibrium is
not respected by the structure itself.
To keep inertia induced deformation proportional to Ψi we
must consider the presence of additional elastic constraints.
This leads to the following considerations

I the frequency of vibration of a structure with additional
constraints is higher than the true natural frequency,

I the criterium to discriminate between different shape
functions is: better shape functions give lower estimates
of the natural frequency, the true natural frequency
being a lower bound of all estimates.
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Selection of mode shapes 2

In general the selection of trial shapes goes through two
steps,
1. the analyst considers the flexibilities of different parts of

the structure and the presence of symmetries to devise
an approximate shape,

2. the structure is loaded with constant loads directed as
the assumed displacements, the displacements are
computed and used as the shape function,

of course a little practice helps a lot in the the choice of a
proper pattern of loading...
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Selection of mode shapes 3

p = m(x)

P = M

p = m(x)

p
=
m

(x
)

p = m(x)
(a)

(b) (c)

(d)
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Refinement R00

Choose a trial function Ψ(0)(x) and write

v(0) = Ψ(0)(x)Z(0) sinωt

Vmax =
1

2
Z(0)2

∫
EJΨ(0)′′2 dx

Tmax =
1

2
ω2Z(0)2

∫
m̄Ψ(0)2 dx

our first estimate R00 of ω2 is

ω2 =

∫
EJΨ(0)′′2 dx∫
m̄Ψ(0)2 dx

.
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We try to give a better estimate of Vmax computing the
external work done by the inertial forces,

p(0) = ω2m̄(x)v(0) = Z(0)ω2Ψ(0)(x)

the deflections due to p(0) are

v(1) = ω2 v
(1)

ω2
= ω2Ψ(1)Z

(1)

ω2
= ω2Ψ(1)Z̄(1),

where we write Z̄(1) because we need to keep the unknown
ω2 in evidence. The maximum strain energy is

Vmax =
1

2

∫
p(0)v(1) dx =

1

2
ω4Z(0)Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx

Equating to our previus estimate of Tmax we find the R01

estimate

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(0) dx∫
m̄(x)Ψ(0)Ψ(1) dx
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With little additional effort it is possible to compute Tmax
from v(1):

Tmax =
1

2
ω2

∫
m̄(x)v(1)2 dx =

1

2
ω6Z̄(1)2

∫
m̄(x)Ψ(1)2 dx

equating to our last approximation for Vmax we have the R11

approximation to the frequency of vibration,

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx∫
m̄(x)Ψ(1)Ψ(1) dx

.

Of course the procedure can be extended to compute better
and better estimates of ω2 but usually the refinements are
not extended beyond R11, because it would be contradictory
with the quick estimate nature of the Rayleigh’s Quotient
method and also because R11 estimates are usually very
good ones.
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With little additional effort it is possible to compute Tmax
from v(1):

Tmax =
1

2
ω2

∫
m̄(x)v(1)2 dx =

1

2
ω6Z̄(1)2

∫
m̄(x)Ψ(1)2 dx

equating to our last approximation for Vmax we have the R11

approximation to the frequency of vibration,

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx∫
m̄(x)Ψ(1)Ψ(1) dx

.

Of course the procedure can be extended to compute better
and better estimates of ω2 but usually the refinements are
not extended beyond R11, because it would be contradictory
with the quick estimate nature of the Rayleigh’s Quotient
method and also because R11 estimates are usually very
good ones.
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With little additional effort it is possible to compute Tmax
from v(1):

Tmax =
1

2
ω2

∫
m̄(x)v(1)2 dx =

1

2
ω6Z̄(1)2

∫
m̄(x)Ψ(1)2 dx

equating to our last approximation for Vmax we have the R11

approximation to the frequency of vibration,

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx∫
m̄(x)Ψ(1)Ψ(1) dx

.

Of course the procedure can be extended to compute better
and better estimates of ω2 but usually the refinements are
not extended beyond R11, because it would be contradictory
with the quick estimate nature of the Rayleigh’s Quotient
method and also because R11 estimates are usually very
good ones.



Refinement Example
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