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1 Impact (elastic rebound)

k
m2m1 = 30 kg

v1 = −4.8 m/s for t > 0.

v1 = +8.0 m/s for t < 0,

A free body, mass m1 = 30 kg and velocity v = 8 m s−1, impacts an undamped

SDOF system, mass m2 and stiffness k .

The impact is, hypothetically, a perfect elastic impact, meaning that also

the energy is conserved during the impact and that the duration of the contact

is infinitesimal.

After the impact the free body has a negative velocity, v = −4.8 m and

the amplitude of the harmonic motion of the SDOF is x2,max = 32 mm.

Determine the mass and the stiffness of the SDOF.
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Solution

In the text, it is stated that the energy is conserved and that the duration of

contact is negligible, so we can say that the kinetic energy is conserved across

the moment of the impact,

1

2
30 kg (+8.0 m s−1)2 =

1

2
30 kg (−4.8 m s−1)2 +

1

2
m2 v

2
2 ⇒

⇒ m2 v
2
2 = 1228.8 kg m2 s−2.

Of course, the momentum is also conserved,

30 kg (+8.0 m s−1) = 30 kg (−4.8 m s−1) +m2 v2 ⇒
⇒ m2 v2 = 384.0 kg m s−1,

and substituting in the previous equation you have

v2 =
1228.8

384.0
m s−1 = 3.2 m s−1.

From m2 v2 = 384.0 kg m s−1 you have

m2 =
384.0

3.2
kg = 120 kg.

cb

The stiffness can be derived observing that the initial conditions for the SDOF

are

x(0) = 0, ẋ(0) = v2,

hence it is

x(t) =
v2
ω

sinωt.

Knowing that the maximum displacement amounts to 32 mm, you have

3200 mm s−1

ω
= 32 mm, ⇒ ω = 100 rad s−1

and

k = m2 ω
2 = 1 200 000 N m−1 = 1.2 kN/millim

2 Dynamical Testing

You want to determine the mass m, the stiffness k and the damping ratio ζ of

a small, one storey building that can be modeled as a single degree of freedom

system.

A series of 4 dynamical test is performed, loading the building with a

vibrodyne and measuring the amplitude ρ and the phase difference θ of the
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steady state motion (note that the number of measurements taken is greater

than what is strictly requested, as it is recognized that there are sources of

uncertainties in the experimental setup).

In each test the load amplitude is p0 = 1600 N, while the excitation fre-

quencies ωn (with n = 1, . . . , 4) are different.

The measurements are summarized in the following table

n fn/1Hz ρn/1µm θn/1°

1 6.0 44.29 12.0

2 7.0 93.44 30.7

3 8.0 119.25 131.6

4 9.0 42.54 162.4

Give your best estimate of m, ζ and k .

2.1 Solution

From the steady-state amplitude for a harmonic excitation,

ρ =
p0
k

1√
(1− β2)2 + (2ζβ)2

collecting (1 − β2)2 in the radicand, taking it outside the square rooot and

rearranging it is

ρ =
p0
k

1

1− β2
1√

1 + (2ζβ/1− β2)2
.

Squaring the expression of the phase angle

tan θ =
2ζβ

1− β2

and expressing the square tangent in terms of the sole cosine, it is

sin2 θ

cos2 θ
=

1

cos2 θ
− 1 =

(
2ζβ

1− β2

)2
⇒ cos2 θ =

1

1 +
(
2ζβ
1−β2

)2 .
Comparing with the last term in the second equation of this solution, you can

write

ρ =
p0
k

cos θ

1− β2 ⇒ k(1− β2) = k + ω2
k

ω2n
= k − ω2m =

p0 cos θ

ρ

For each one of the 4 dynamic tests you can now write

k − ω2i m =
p0 cos θi

ρi
, i = 1, 2, 3, 4
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so you can write 4 linear equations for the two unknowns k and m.

When you have a linear system Ax = b with more equations than un-

knowns, it is usually solved under the hypotesis that the best solution is the

solution that minimises the sum of the squares of the residuals r = b − Ax .

A detailed discussion of the least squares minimization procedure is to be

found in an any algebra or statistic textbook. For what it’s worth, I gave a sum-

mary of it in http://stru.polimi.it/people/boffi/dati˙2011/ha01/solutions.

pdf

That said, substituting the quantities measured during the tests in the

previous equations, you have
1 −1421.22

1 −1934.44

1 −2526.62

1 −3197.75

{km
}

=


+35336106.6

+14723497.8

−08908024.7

−35851082.9


and the equation that gives the best solution in terms of least squares is[

4.0000 −9080.0360

−9080.0360 22371361.4832

]{
k

m

}
=

{
5300496.7973

58447799899.0092

}
,

from which you eventually have

m = 40 054.5 kg, k = 92.25 MN m−1.

We can derive different expressions for cos θ, from the second eq. of this

solution,

cos θ = (1− β2)
ρ k

p0

and from the eq. of the phase

cos θ = (1− β2)
sin θ

2ζβ
.

Equating the two right members and solving for ζ gives you

ζ =
p0 sin θ

ρ

1

2β k
=
p0 sin θ

ρ

1

ccrω

and hence

c =
p0 sin θi
ρi ωi

.

Applying the least squares procedure,

4c = p0
∑ sin θi

ρi ωi
= (199233 + 198765 + 199607 + 201112)N s m−1

or

c = 199 679.6 N s m−1.
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3 Numerical Integration

A single degree of freedom system, with a mass m = 3 kg, a stiffness k =

1200 N m−1 and a damping ratio ζ = 0.10 is at rest when it is subjected to an

external force p(t):

p(t) =

p0
(t0 − t)2t

t30
for 0.0 ≤ t ≤ t0,

0.0 otherwise.

0

2

4

6

8

0 0.04 0.12

where t0 = 0.12 s and p0 = 54 N.

(1) Give the analytical solution of the equation of motion in the interval

0 ≤ t ≤ 10t0. (2) Integrate the equation of motion numerically, using the

algorithm of constant acceleration with a time step h = t0/30 in the same

interval. (3) Plot your results (both the exact response and the numerical

solution) in a meaningful manner. (4) [Optional] Repeat the numerical in-

tegration assuming an elasto-plastic spring with a yield strength fy = 6 N and

plot your results.

Solution

We start by determining all the characteristics of the SDOF system that

weren’t given in the text,

ωn =

√
k

m
= 20 rad s−1,

ωD = ωn
√

1− ζ2 = 19.90 rad s−1,

c = 2 ζ mωn = 12 N/(m/s).

Analytical solution

The particular integral for the given loading can be expressed as a polynomial

of third degree,

ξ(t) =
P0t

3 + P1t0t
2 + P2t

2
0 t + P3t

3
0

t30
,

substituting in the equation of motion and multiplying by t30 both members,

P0kt
3 + (t0P1k + 3P0c)t2+

+ (P2t
2
0k + 2t0P1c + 6P0m)t + (P3t

3
0k + P2t

2
0c + 2t0P1m) =

= p0 (t3 − 2t0t
2 + t20 t).
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Equating the coefficients of each power of t,

P0 =
p0
k

=
9

200
m = 0.045 m,

P1 =
−3P0c − 2t0p0

t0k
= −

81

800
m = −0.101 250 m,

P2 =
−6P0m − 2t0P1c + t20p0

t20k
=

3

200
m = 0.015 m,

P3 =
−2t0P1m − t20P2c

t30k
=

217

6400
m = 0.033 906 250 m.

Hence. with the position υ = t/t0, it is

ξ(t)

1 m
=

9

200
υ3 −

81

800
υ2 +

3

200
υ +

217

6400
,

ξ̇(t)

1 m s−1
=

(
27

200
υ2 −

81

400
υ +

3

200

)
1

t0

and we can write

x(t)

1 m
= −

0.033 906 250 cosωDt + 0.009 689 193 sinωDt

exp ζωnt
+
ξ(t)

1 m
.

The state at the end of the excitation is

x(t0) = 0.006 890 095 m, ẋ(t0) = 0.007 823 390 m s−1.

and using τ = t − t0 as the new time coordinate it is

x(t)

1 m
=

0.006 890 095 cosωDτ + 0.001 085 621 sinωDτ

exp ζωnτ
.

Numerical Integration

Here it is the small Python program that computed the response,

f rom math impo r t s q r t

d e f p ( t ) :
” r e t u r n s the a p p l i e d l o a d ”
r e t u r n 0 i f t>t0 e l s e p0 ∗( t0−t )∗∗2∗ t / t0 ∗∗3

m = 3 .0 # mass , kg
k = 1200.0 # s t i f f n e s s , N/m
z = 0 .10 # damping r a t i o
p0 = 54 .0 # l o a d i n g f a c t o r , N
t0 = 0 .12 # load du r a t i o n , s
wn = s q r t ( k/m) # n a t u r a l f r e q . , r ad / s
c = 2∗wn∗ z∗m # damping , N/(m/ s )
h = t0 /30 . # time step , s
dur = t0 ∗10.0+h /2 . # du r a t i o n , s
K = k + 2∗ c/h + 4∗m/h/h # mod i f i e d s t i f f . , N/m
V = 2∗ c + 4∗m/h # damping c o r r e c t i o n , N/(m/ s )
A = 2∗m # i n e r t i a l c o r r e c t i o n , kg

T0 = 0 .0 ; X0 = 0 .0 ; V0 = 0 .0 ; P0 = p (T0)
w h i l e T0<dur :

A0 = (P0−V0∗c−X0∗k )/m
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p r i n t T0 , X0
T1 = T0+h
P1 = p (T1)
dP = P1−P0 + V∗V0 + A∗A0
dX = dP/K
X1 = X0+dX
dV = 2∗dX/h −2∗V0
V1 = V0+dV
X0 = X1 ; V0 = V1 ; T0 = T1 ; P0 = P1

Plots

In the following, a plot of the response in the interval 0 ≤ t ≤ 10t0 and a

zoom of the same plot in a neighborhood of the peak value of the response
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4 Generalized Coordinates (rigid bodies)

L L L

L
L

Ck

c

E

DB

A ≡ Ω1

Ω2

p(t)

The articulated system in figure, composed by

• two rigid bars, (1) ABC and (2) CDE,

• three kinematical constraints, (1) a hinge in A, (2) an internal hinge

in C and (3) a vertical roller in E,

• two deformable constraints, (1) a rotational spring1 in C, its stiffness

k , (2) a rotational dashpot2 in E, its damping coefficient c ,

is excited by a time varying horizontal force applied in D, p(t)

Considering that the bar ABC has a constant unit mass m, with mL = m

while all the other parts of the system are massless, and using vE (the vertical

displacement of the roller initially in E) as the generalized coordinate

1. compute the generalized parameters m∗, c∗ and k∗,

2. compute the generalized loading p∗(t) and

3. write the equation of dynamic equilibrium.

1A rotational spring gives, on each connected beam, a couple proportional and opposite

to the relative rotation between the beams. Note that indicating with φAB the rotation of

beam A relative to beam B, it is φAB = −φBA.
2Same as a rotational spring, but the couple is proportional to the time derivative of the

relative rotation.
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Solution

Rotations Assuming an upwards v ≡ vE , the rotation of the second rod is

θ2 = v/3L while, by congruence in C, the rotation of the first rod is

θ1 = 2θ2 = 3v/3L.

Relative Rotation The relative rotation between the second and the first rod

is θ21 = θ2 − θ1 = −v/3L and the variation of the relative rotation is

δθ21 = −δv/3L.

Spring and Damper Moments The spring moment isW2,S = −kθ21 = kv/3L

and by the same reasoning the damping moment is W2,D = cv̇/3L.

Accelerations The rotational acceleration of the first rod is θ̈1 = 2v̈ /3L, the

acceleration of the centre of mass GV of the vertical part of the first

rod has components üGV = −v̈ /3, v̈GV = 0 while GH the centre of

mass of the horizontal part has acceleration components üGH = −2v̈ /3,

v̈GH = v̈ /3. The

Inertial Forces Given that each part has massm and ratational inertiamL2/12

Virtual Works Collecting the virtual work of the inertial forces, of the in-
ertial moments, of the damping moments and of the spring moments,
collecting the virtual displacements, it is[

−
(
1

9
+
4

9
+
1

9

)
mv̈ −

(
4

9L2
+
4

9L2

)
mL2

12
v̈ −

1

9L2
cv̇ −

1

9L2
kv −

2

3
P (t)

]
δv = 0

Simplifying, negating and taking the external force on the other side

20

27
mv̈ +

1

9

c

L2
v̇ +

1

9

k

L2
= −

2

3
P (t).

5 Rayleigh Quotient

A straight, uniform beam of length L is clamped at x = 0 and is simply

supported at x = L. It is possible to approximate its free vibrations using a

shape function ψ(x),

v(x, t) = Z0 ψ(x) sin(ωt), 0 ≤ x ≤ L.

Using a polynomial shape function ψ(x) =

n∑
i=0

ai(x/L)i and imposing the kine-

matical conditions at x = 0 (ψ(0) = 0, ψ′(0) = 0), you’ll find that the

constant term and the linear term in the polynomial must be equal to zero.

1. Using a shape function ψ(x) = ξ2 + aξ3, ξ = x/L, such that ψ(L) = 0

estimate, by the means of Rayleigh quotient, ω2.
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2. Using a shape function ψ(x) = ξ2 + aξ3 + bξ4 such that ψ(L) = 0 and

M(L) = 0, compute a new estimate of ω2.

3. [Optional] Using a shape function ψ(x) = ξ2 + aξ3 + bξ4 + cξ5 you can

obey all the constraints and still have at your disposal a free parameter.

Find the minimum value of the Rayleigh quotient computed as a function

of the free parameter.

Solution

Cubic Shape Function Using ψ = ξ2 − ξ3, 0 ≤ ξ ≤ 1 as our shape function,

we respect all the kinematical boundary conditions, in particular it is

ψ(1) = 0.

The Rayleigh quotient formula gives

ω2 =
EJ

m

∫ L
0 ψ

′′2(x) dx∫ L
0 ψ

2(x) dx

and using ψ′′ = 2−6ξ
L2

we’ll find

ω2 =
4EJ
L3

mL
105

= 420
EJ

L4m

Given that a very good approximation to the first eigenvalue of a uniform,

clamped-simply supported beam is

ω21 ≈
EJ

mL4

(
5

4
π

)4
≈ 237.8

EJ

mL4

our first trial, with a cubic shape function, is not very satisfactory.

Quartic Shape Function We are going to determine a quartic polynomial

ψ = ξ2 + a3ξ
3 + a4ξ

4, L2ψ′′ = 2 + 6a3ξ + 12a4ξ
2,

such that ψ(1) = 0 and ψ′′(1) = 0. Substituting and simplifying, we

have

1 + 1a3 + 1a4 = 0,

1 + 3a3 + 6a4 = 0.

Solving

a3 = −
5

3
, a4 = +

2

3
,
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substituting in ψ and ψ′′

ψ = ξ2 −
5

3
ξ3 +

2

3
ξ4, L2ψ′′ = 2− 10ξ + 8ξ2.

Computing the integrals and taking the Rayleigh quotient, gives

EJ

∫ L

0

ψ′′
2

(x) dx =
4EJ

5L3
,

m

∫ L

0

ψ2(x) dx = mL
19

5670
,

ω2 =
4536

19

EJ

mL4
≈ 238.737

EJ

mL4
.

Comparing this result with the (almost) exact soltion, it is apparent that

a shape function that respects also the mechanical boundary conditions

can give very good results.

Quintic Shape Function We write our shape function as

ψ = ξ2 + a3ξ
3 + a4ξ

4 + a5ξ
5,

we evaluate the function and its second derivative at x = L and by

imposing that they are equal to zero we have

a3 = (4a5 − 5)/3, a4 = (2− 7a5)/3

and substituting we have

ψ = ξ2 +
4a5 − 5

3
ξ3 +

2− 7a5
3

ξ4 + a5ξ
5,

L2ψ′′ = 2 + (8a5 − 10)ξ + (8− 28a5)ξ
2 + 20a5ξ

3.

Computing the integrals and taking the Rayleigh quotient, gives

EJ

∫ L

0

ψ′′
2

(x) dx = (16a25 + 28a5 + 21)
4EJ

105L3

m

∫ L

0

ψ2(x) dx = (104a24 + 28a5 + 209)
mL

62370
,

ω2 = 2376
16a25 + 28a5 + 21

104a24 + 28a5 + 209

EJ

mL4
.

Plotting ω2(a5) and using successive zooms, it is possible to say that the

best estimate of ω2 is found for a5 = 0.0634883 and ω2 = 238.4820EJ/(mL4).

The improvement is not negligible but, all in all, it doesn’t seem worth

the extra effort needed for its computation.
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6 3 DOF System

EJ = const, m̄L� m.

2m

x3

x1

m

x2

L L L

L
L

A three hinged arch supports two different bodies of negligible dimensions,

whose total mass is much greater than the mass of the structure. Axial and

shear deformations can be neglected.

1. Discuss the choice of the dynamical degrees of freedom given in figure.

With the positions ω20 = k/m and k = EJ/L3,

2. compute the three eigenvalues of the system and the corresponding

eigenvectors, normalizing the eigenvectors with respect to the mass ma-

trix M (ΨΨΨ being the eigenvectors’ matrix, it must be ΨΨΨT MΨΨΨ = mI).

Considering that the system is at rest when t = 0 and is then loaded by

p(t) =
kL

2000


0

1

0

 sin(
ω0
6
t),

(3) write the three modal equations of motion, (4) integrate the modal

equations of motion and write the three equations of modal displacement,

qi = qi(t) (you should be able to write your results in terms of the unit

length L), (5) find the analytical expression of u3 = u3(t), showing your

intermediate results and (6) plot u3 in the interval 0 ≤ ω0 t ≤ 10.

Hint

F = K−1 =
L3

EJ

1

6

408 −98 53

−98 · · · −13

53 −13 · · ·

 , K =
EJ

L3
3

200

 11 19 −42

19 · · · 22

−42 22 · · ·

 .
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Solution

The structural matrices, with k = EJ/L3, are

M = m

1 0 0

0 1 0

0 0 2

 , F =
1

6k

408 −98 53

−98 28 −13

53 −13 8

 , K = k
3

200

 11 19 −42

19 91 22

−42 22 364

 .
The equation of free vibrations can be written, using the position ω2 =

ω10Λ2  3

200

 11 19 −42

19 91 22

−42 22 364

− Λ2

1 0 0

0 1 0

0 0 2

 ψ = 000

and has non trivial solutions when the determinant of the coefficient matrix

is equal to zero. Expanding the determinant and simplifying gives

500Λ6 − 2130Λ4 + 2034Λ2 − 27 = 0,

whose roots are

Λ21 = 0.013463559176, Λ22 = 1.41797294149, Λ23 = 2.82856349934.

The associated eigenvectors can be collected in the eigenvector matrix,

ΨΨΨ =

+0.95646241 +0.25012888 −0.15038354

−0.23221417 +0.96433364 +0.12703235

+0.12501249 −0.06122164 +0.69327036

 .
The eigenvector are normalized, such that the modal mass and the modal

stiffness are

Mi = m, Ki = Miω
2
i = mΛ2i ω

2
0.

Given the fixed load vector shape,

pi(t) = ψTi


0

1

0

 . . . = ψ2i
kL

2000
sin(

1

6
ω0t) = ψ2ikδ sin(Λ0ω0t),

where δ = L/2000 and Λ0 = 1/6.

The generic modal equation of motion, after division of all then terms by

m, is

q̈i + ω20Λ2i qi = ψ2iω
2
0δ sin(Λ0ω0t)

and, substituting the values of Λ’s and ψ’s, it is

q̈1 + 0.013464 ω20q1 = −0.232214 ω20δ sin(
1

6
ω0t),

q̈2 + 1.417973 ω20q2 = +0.964334 ω20δ sin(
1

6
ω0t),

q̈3 + 2.828563 ω20q3 = +0.127032 ω20δ sin(
1

6
ω0t).
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A particular integral is

ξi = Ci sin(Λ0ω0t)

and substituting in the equation of motion it is

(Λ2i − Λ20)ω
2
0Ci sin(Λ0ω0t) = ψ2iω

2
0δ sin(Λ0ω0t) ⇒ Ci =

ψ2i

Λ2i − Λ20
δ.

The system starting from rest condition, it is

qi(0) = 0, q̇i(0) = 0

and the modal response functions can be written

qi(t) =
ψ2i

Λ2i − Λ20
δ

(
sin(Λ0ω0t)−

Λ0
Λi

sin(Λiω0t)

)
or, substituting the numerical values and using an adimensional time a = ω0t,

q1
δ

= 16.222623 sin(
1

6
a)− 23.301822 sin(0.116033 a),

q2
δ

= 0.693668 sin(
1

6
a)− 0.097088 sin(1.190787 a),

q3
δ

= 0.045356 sin(
1

6
a)− 0.004495 sin(1.681833 a).

Here it is a plot of the modal responses, note that I extended a bit (15 times!)

the time range for the plot. Note also that q2 and q3 were scaled to make

them visible on the plot!
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The displacement component x3 is given by

x3(t) =
∑

ψ3i qi(t),

that substituting the numerical values and simplifying gives

x5
δ

= 2.017 sin(
a

6
)−2.913 sin(0.116 a)+

5.944

1000
sin(1.191 a)−

3.116

1000
sin(1.682 a)

and here it is the corresponding plot.
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