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1 Impact (elastic rebound)

m; =30kg | —* my
k

(@) (@)

vi = +8.0m/s for t <0,
vy = —4.8m/s for t > 0.

1 impacts an undamped

A free body, mass m; = 30kg and velocity v =8ms™
SDOF system, mass m» and stiffness k.

The impact is, hypothetically, a perfect elastic impact, meaning that also
the energy is conserved during the impact and that the duration of the contact
is infinitesimal.

After the impact the free body has a negative velocity, v = —4.8m and
the amplitude of the harmonic motion of the SDOF is X2 max = 32 mm.

Determine the mass and the stiffness of the SDOF.



Solution

In the text, it is stated that the energy is conserved and that the duration of
contact is negligible, so we can say that the kinetic energy is conserved across
the moment of the impact,

1 1 1
530kg (+8.0ms )% = 530kg (—4.8ms )% + 5 m Vi =
=  movi=1228.8kgm?s 2.

Of course, the momentum is also conserved,

30kg (+8.0ms 1) =30kg(—4.8ms )+ mv. =
= mov =384.0kgm st

and substituting in the previous equation you have

1228.8

-1 _ -1
3840 ms - =32ms -.

Vo =

From ms v» = 384.0kgms~! you have

384.0
_ 2% = 120kg.
M2 = —3757kg = 120kg

Ay

The stiffness can be derived observing that the initial conditions for the SDOF
are
x(0) =0, x(0) = vo,

hence it is y
2 .
x(t) = —= sinwt.
(t) =2

Knowing that the maximum displacement amounts to 32 mm, you have

3200 mm st
w

=32mm, = w=100rads™ !

and
k = myw?=1200000Nm~t = 1.2kN/millim

2 Dynamical Testing

You want to determine the mass m, the stiffness k and the damping ratio ¢ of
a small, one storey building that can be modeled as a single degree of freedom
system.

A series of 4 dynamical test is performed, loading the building with a
vibrodyne and measuring the amplitude p and the phase difference 8 of the
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steady state motion (note that the number of measurements taken is greater
than what is strictly requested, as it is recognized that there are sources of
uncertainties in the experimental setup).

In each test the load amplitude is pg = 1600 N, while the excitation fre-
quencies w, (withn=1, ..., 4) are different.

The measurements are summarized in the following table

n fy,/1Hz p,/luym 6,/1°
1 6.0 44.29 12.0
2 7.0 03.44 30.7
3 8.0 119.25 131.6
4 9.0 4254 162.4

Give your best estimate of m, ¢ and k.

2.1 Solution
From the steady-state amplitude for a harmonic excitation,

_m 1
k=B + (20P)

collecting (1 — 8%)? in the radicand, taking it outside the square rooot and
rearranging it is

_po_ 1 !
= — .
k1 B \/1 4 (246/1_62)2

Squaring the expression of the phase angle

2¢B
tanf =
an TGE
and expressing the square tangent in terms of the sole cosine, it is
5 2
sin“ @ 1 2B 5 1
cos?®  cos?f (1 — ,62) cos

5
1+ (#%)
Comparing with the last term in the second equation of this solution, you can

write

po cos6 5 5 k 5 po cosf
= — = k(1-B)=k+tw —s=k—-wm=——-—
k1-p2 ( ) wi p

For each one of the 4 dynamic tests you can now write

cos 0,
k—w?m:%, i=1,234
i
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so you can write 4 linear equations for the two unknowns k and m.

When you have a linear system Ax = b with more equations than un-
knowns, it is usually solved under the hypotesis that the best solution is the
solution that minimises the sum of the squares of the residuals r = b — Ax.

A detailed discussion of the least squares minimization procedure is to be
found in an any algebra or statistic textbook. For what it's worth, | gave a sum-
mary of itin http://stru.polimi.it/people/boffi/dati_2011/hal0l/solutions.
pdf

That said, substituting the quantities measured during the tests in the
previous equations, you have

1 —1421.22 +35336106.6
1 —1934.44| [k | +14723497.8
1 —2526.62 {m}_ —08908024.7
1 —3197.75 —35851082.9

and the equation that gives the best solution in terms of least squares is

4.0000 —9080.0360 kl 5300496.7973
—9080.0360 22371361.4832| | m[ | 58447799899.0092

from which you eventually have
m =40054.5kg, k=9225MNm~!.

We can derive different expressions for cos @, from the second eq. of this
solution,

k
cosh = (1 —Bz)p—
Po

and from the eq. of the phase

cosf = (1 — 32 2259

Equating the two right members and solving for { gives you

__posing® 1 posing 1

¢ p 2Bk p  cqw

and hence .
o Po sin B,

Pi Wi
Applying the least squares procedure,

Ac=po»

= (199233 + 198765 + 199607 + 201112)Nsm~!

sin 6;
Pi Wi

or
c=199679.6 Nsm™!.
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3 Numerical Integration

A single degree of freedom system, with a mass m = 3kg, a stiffness k =
1200 N m~! and a damping ratio ¢ = 0.10 is at rest when it is subjected to an
external force p(t):

(to — t)°t
t5
0.0 otherwise.

Po for 0.0 <t <t

p(t) =

ON O ©
T

0 0.04 0.12

where tg = 0.12s and pg = 54 N.

(1) Give the analytical solution of the equation of motion in the interval
0 <t <10t. (2) Integrate the equation of motion numerically, using the
algorithm of constant acceleration with a time step h = t3/30 in the same
interval.  (3) Plot your results (both the exact response and the numerical
solution) in a meaningful manner.  (4) [Optional] Repeat the numerical in-
tegration assuming an elasto-plastic spring with a yield strength f, = 6 N and
plot your results.

Solution

We start by determining all the characteristics of the SDOF system that
weren't given in the text,

wn:UK:ZOrads*l,
m

Wp = wny/1—¢2=19.90rads™?,

c=2(mwy,=12N/(m/s).

Analytical solution

The particular integral for the given loading can be expressed as a polynomial
of third degree,

Pot® + Pitot? 4+ Potdt + Patd
5

(1) =
substituting in the equation of motion and multiplying by tg both members,

Pokt3 + (toPik 4+ 3Pyc)t?+
+ (Potek + 2tgPrc + 6Pym)t + (Pstok 4 Patic + 2tgPym) =
= po (£3 = 2tot? + t21).
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Equating the coefficients of each power of t,

Py = ’iko = %m —0.045m,

P — W’ - —%m — _0.101250m,

P, — —6Pym — ié(;(Plc + t2po _ %m _ 0.015m
Py = Qtopl%’k toPac _ 6241070m — 0.033906 250 m.

Hence. with the position v = t/ty, it is

€6 _ 9 5 8L o 3 217

1m 200 800 200 6400’
&ty (271 , 81 3\1
1ms— 200" ~ 200" T 200

to

1

and we can write

x(t) ~ 0.033906250 coswpt + 0.009689 193 sinwpt n &(t)
im exp Cwnt Im’

The state at the end of the excitation is
x(tg) = 0.006 890095 m, x(to) = 0.007823390ms 1.

and using T =t — ty as the new time coordinate it is

x(t)  0.006890095 coswpT + 0.001 085621 sinwpT
Im exp CwnT '

Numerical Integration

Here it is the small Python program that computed the response,

from math import sqrt

def p(t):
"returns.the_applied_load”
return 0 if t>t0 else pO*(tO—t)**x2xt/t0*%3

m= 3.0 # mass, kg

k = 1200.0 # stiffness , N/m

z =0.10 # damping ratio

p0 = 54.0 # loading factor, N

t0 = 0.12 # load duration, s

wn = sqrt (k/m) # natural freq., rad/s

Cc = 2%wn*z*m # damping, N/(m/s)

h = t0/30. # time step, s

dur = t0%10.0+h/2. # duration, s

K =k + 2%xc/h + 4xm/h/h # modified stiff., N/m

V = 2%c + 4xm/h # damping correction, N/(m/s)
A = 2xm # inertial correction, kg

TO = 0.0 ; X0 =0.0 ; VO =0.0 ; PO = p(TO)
while TO<dur:
A0 = (PO0—VOxc—X0*k)/m
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print TO0, XO

T1 = T0+h

P1 = p(T1)

dP = P1-PO + V*V0 + AxA0

dX = dP/K

X1 = XO0+dX

dV = 2xdX/h —2%V0

V1 = VO+dV

X0 =Xl ; Vo=Vl ; To=T1; PO =P1

Plots

In the following, a plot of the response in the interval 0 < t < 10ty and a
zoom of the same plot in a neighborhood of the peak value of the response

I T I
Numerical

Statical disp. ———

Displacements/mm

0 0.12 024 036 048 06 0.72 0.84 096 1.08 1.2
Time/s

7.2

Numerical’
Analytical %

661 s

Displacements/mm

| | | | |
0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14
Time/s
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4 Generalized Coordinates (rigid bodies)

The articulated system in figure, composed by
e two rigid bars, (1) ABC and (2) CDE,

e three kinematical constraints, (1) a hinge in A, (2) an internal hinge
in C and (3) a vertical roller in E,

e two deformable constraints, (1) a rotational spring! in C, its stiffness
k, (2) a rotational dashpot? in E, its damping coefficient c,

is excited by a time varying horizontal force applied in D, p(t)

Considering that the bar ABC has a constant unit mass m, with mL = m
while all the other parts of the system are massless, and using vg (the vertical
displacement of the roller initially in E) as the generalized coordinate

1. compute the generalized parameters m*, c* and k*,
2. compute the generalized loading p*(t) and

3. write the equation of dynamic equilibrium.

LA rotational spring gives, on each connected beam, a couple proportional and opposite
to the relative rotation between the beams. Note that indicating with ¢as the rotation of
beam A relative to beam B, it is pag = —¢PBa.

2Same as a rotational spring, but the couple is proportional to the time derivative of the
relative rotation.
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Solution

Rotations Assuming an upwards v = vg, the rotation of the second rod is
0> = v/3L while, by congruence in C, the rotation of the first rod is
91 = 292 = 3V/3L.

Relative Rotation The relative rotation between the second and the first rod

is 021 = 6> — 01 = —v/3L and the variation of the relative rotation is
5921 == —(5V/3L.

Spring and Damper Moments The spring momentis Wb s = —k61 = kv /3L
and by the same reasoning the damping moment is W5 p = cv/3L.

Accelerations The rotational acceleration of the first rod is 6; = 2v /3L, the
acceleration of the centre of mass Gy of the vertical part of the first

rod has components iig, = —V/3, Vg, = 0 while Gy the centre of
mass of the horizontal part has acceleration components g, = —2V/3,
VGH = V/3 The

Inertial Forces Given that each part has mass m and ratational inertia mL?/12

Virtual Works Collecting the virtual work of the inertial forces, of the in-
ertial moments, of the damping moments and of the spring moments,
collecting the virtual displacements, it is

(1+4+1)m" (4+4)mL2” v - kv 2P| sv=0
| =+=-+= Vel =+ =—5 ) —=V—-—5cv— —5kv— = v =
9 9 9 9L2 9L2 12 9L2 9L2 3

Simplifying, negating and taking the external force on the other side
20 lc. 1k

—mv + — +§ﬁ

2
27 92" =3P

5 Rayleigh Quotient

A straight, uniform beam of length L is clamped at x = 0 and is simply
supported at x = L. It is possible to approximate its free vibrations using a
shape function 9(x),

v(x, t) = Zo(x) sin(wt), 0<x<L.

n
Using a polynomial shape function 9(x) = Za,-(x/L)f and imposing the kine-

=0
matical conditions at x = 0 (¢(0) = 0, ¢'(0) = 0), you'll find that the
constant term and the linear term in the polynomial must be equal to zero.

1. Using a shape function 9(x) = €2 + a¢3, € = ¥/, such that ¥(L) =0

estimate, by the means of Rayleigh quotient, w?.
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2. Using a shape function ¥(x) = €2 + a¢3 + bé* such that (L) = 0 and
M(L) = 0, compute a new estimate of w?.

3. [Optional] Using a shape function (x) = &2 + a&3 + b&* + c£° you can
obey all the constraints and still have at your disposal a free parameter.
Find the minimum value of the Rayleigh quotient computed as a function
of the free parameter.

Solution

Cubic Shape Function Using 1 = €2 — ¢3, 0 < € < 1 as our shape function,
we respect all the kinematical boundary conditions, in particular it is

P(1) =0.
The Rayleigh quotient formula gives

2 EJJy 9" (x) dx
m [ 2(x) dx

and using ¥" = 22265 we'll find
4EJ
= EJ
105 m

Given that a very good approximation to the first eigenvalue of a uniform,
clamped-simply supported beam is

EJ /5 \* EJ
2 o ~ _
wi ~ P (47r> ~ 237.8 I

our first trial, with a cubic shape function, is not very satisfactory.
Quartic Shape Function We are going to determine a quartic polynomial
P = €2+ 383 + as¢?, L29" =2 + 6as€ + 12a4€2,

such that (1) = 0 and 9”(1) = 0. Substituting and simplifying, we
have

1+1laz+1as =0,
1+3a3+6a4 =0.

Solving

W] o1
w

a3z = —
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substituting in 4 and "
5 5.3 2.4 2,11 2

Computing the integrals and taking the Rayleigh quotient, gives

L
5 4FJ
£ [ w0 =553,
L
19
2
dx = mL———
”’jﬁ W (x) dx = ml =25,

4536 EJ EJ
2

= e 038737
19 mL4 38 737mL4

Comparing this result with the (almost) exact soltion, it is apparent that
a shape function that respects also the mechanical boundary conditions
can give very good results.

Quintic Shape Function We write our shape function as

Y =€+ a3€> + s + a5,

we evaluate the function and its second derivative at x = L and by
imposing that they are equal to zero we have

az = (4as — 5)/3, ay = (2—7as)/3

and substituting we have

4as — 5 2—Ta
Y=+ 53 £+ ¢ 1 asg®,

L24" =2+ (8as — 10)¢ + (8 — 285)¢2 + 20a5€>.

Computing the integrals and taking the Rayleigh quotient, gives

EJL/Lw”%x)dx::Uﬁaz+28a +21yfEi
0 5 > 1053
m /L ¥?(x) dx = (104a3 + 28as + 209)LL
0 62370

16a2 4+ 28as +21 EJ

2
— 2376 .
“ 10422 + 28a5 + 209 mL*

Plotting w?(as) and using successive zooms, it is possible to say that the
best estimate of w? is found for as = 0.0634883 and w? = 238.4820EJ/(mL*%).

The improvement is not negligible but, all in all, it doesn't seem worth
the extra effort needed for its computation.
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6 3 DOF System

EJ=const, mL <K m.

X2

5‘—I3
e

Qf }

A three hinged arch supports two different bodies of negligible dimensions,
whose total mass is much greater than the mass of the structure. Axial and
shear deformations can be neglected.

1. Discuss the choice of the dynamical degrees of freedom given in figure.
With the positions w3 = ¥/m and k = EJ/.2,

2. compute the three eigenvalues of the system and the corresponding
eigenvectors, normalizing the eigenvectors with respect to the mass ma-
trix M (W being the eigenvectors’ matrix, it must be W MW = ml).

Considering that the system is at rest when t = 0 and is then loaded by

0
kL . Wo
—_ 1 _ -
p(t) = 5000 : sin( 5 t),

(3) write the three modal equations of motion, (4) integrate the modal
equations of motion and write the three equations of modal displacement,
gi = qi(t) (you should be able to write your results in terms of the unit
length L), (5) find the analytical expression of uz = wus(t), showing your
intermediate results and (6) plot us in the interval 0 < wp t < 10.

Hint
408 —98 53 11 19 —42
L31 E
F:K—le—J6 -98 .- —13], K:L—j;E 19 .. 22
53 —13 ... —42 22
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Solution

The structural matrices, with k = EJ/13, are

1 00 1 408 —-98 53 3 11 19 —42
M=m|0 1 0|, F= 6k -98 28 -—-13|, K= k% 19 91 22
0 0 2 53 —-13 8 —42 22 364

The equation of free vibrations can be written, using the position w? =

172
wo/\

5 [11 19 —42 100
S0 | 19 91 22 —AN2(0 1 0||9y=0
—42 22 364 00 2

and has non trivial solutions when the determinant of the coefficient matrix
is equal to zero. Expanding the determinant and simplifying gives

500A° — 2130A* + 2034A% — 27 = 0,
whose roots are
A3 =0.013463559176, A3 =1.41797294149, A3 = 2.82856349934.
The associated eigenvectors can be collected in the eigenvector matrix,

+0.95646241 +0.25012888 —0.15038354
V¥ = | -0.23221417 +0.96433364 +0.12703235
+0.12501249 —0.06122164 +0.69327036

The eigenvector are normalized, such that the modal mass and the modal
stiffness are
Mi=m, Kj=Muw?=mNws.

Given the fixed load vector shape,

0
kL 1 .
pi(t) = 1[},-T 1p...=vYsi=———=sin(=wot) = Poikd sin(Aowot),
0 2000 6

where § = L/2000 and Ag = /6.
The generic modal equation of motion, after division of all then terms by
m, is
g + w%/\%q,- = zpz,-w%é Sin(/\owot)

and, substituting the values of A's and Y's, it is
1
G1 +0.013464 w3qy = —0.232214 w36 sin(gwot),
. 5 e . 1
Go +1.417973 wige = +0.964334 wgd sm(gwot),

1
Gz +2.828563 wiqs = +0.127032 w3d sm(gwot).
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A particular integral is
& = Cisin(Aowot)

and substituting in the equation of motion it is

(A2 — N)wiCisin(Aowot) = Yoiwdd sin(Aowot) = C;i= Vi )

The system starting from rest condition, it is

and the modal response functions can be written

1!’2/ . /\0 .
qi(t) = N A2 0 <S|n(/\owot) N S|n(/\,-wot)>

or, substituting the numerical values and using an adimensional time a = wqt,

qi . 1 .
% 16222623 sin( ) —23.301822 sin(0.116033 a),
1
% = 0693668 sin( a) — 0.097088 sin(1.190787 a),
1 |
% = 0045356 sin( ) — 0.004495 sin(1.681833 ).

Here it is a plot of the modal responses, note that | extended a bit (15 times!)
the time range for the plot. Note also that g» and g3 were scaled to make
them visible on the plot!

40

30
20
10

0

a//6

-10
-20
-30

-40 | | | | | | |
0 20 40 60 80 100 120 140

a=uwpt
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The displacement component x3 is given by

x3(t) =Y ¥ qi(t),
that substituting the numerical values and simplifying gives

4 3.116
in(1.191 a)— in(1.682
1000 sin(1.191 a) 1000 sin(1.682 a)

% —2.017 sin(g)—2.913 sin(0.116 a)+

and here it is the corresponding plot.

| | | |
0 20 40 60 80 100 120 140
a=uwpt

Just to be sure, | integrated numerically the equation of motion, and here
it is the comparison

5

Analytical |
| Numerical

N w »~
T
|

X3/5
—
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