
Aliasing by example

Giacomo Boffi

April 1, 2014

Part I

Aliasing
Given a sampling rate ∆t, we want to show that a harmonic function (here, a cosine) with a frequency higher than the
the Nyquist frequency ωNy = π

∆t cannot be distinguished by a lower frequency harmonic, sampled with the same time
step.

1 Definitions

First, we import a Matlab-like set of commands,

In [1]:

%pylab inline

Populating the interactive namespace from numpy and matplotlib

To be concrete, we’ll use ∆t = 0.4 s and a fundamental period Tn = 20 s, hence a number of samples per period
N = 50, or 2.5 samples per second.

In [2]:

Tp = 20.0
N = 50
step = Tp/N

To the values above, we associate the fundamental frequency of the DFT and the corresponding Nyquist frequency.

In [3]:

dw = 2*pi/Tp
wny = dw*N/2
print "omega_1 =", dw
print "Nyquist freq. =",wny,"rad/s =", wny/dw, ’* omega_1’

omega_1 = 0.314159265359
Nyquist freq. = 7.85398163397 rad/s = 25.0 * omega_1

For comparison, we want to plot our functions also with a high sampling rate, so that we create the illusion of plotting
a continuous function, so we say

In [4]:

M = 1000

The function linspace generates a vector with a start and a stop value, with that many points in it (remember that the
number of intervals is the number of points minus one),



In [5]:

t_n=linspace(0.0,Tp,N+1)
t_m=linspace(0.0,Tp,M+1)

The Nyquist circular frequency is 25∆ω.

The functions that we want to sample and plot are

cos(h∆ωt) and cos((h−N)∆ωt),

in this example it is h = 47 but it works with different values of h as well. . .

In the following, hs and ls mean high and low sampling frequency, while hf and lf mean high and low cosine
frequency. Note that t_m and t_n are vectors, and also c_hs_hf etc are vectors too.

In [6]:

hf = 47
lf = hf - N

c_hs_hf = cos(hf*dw*t_m)
c_hs_lf = cos(lf*dw*t_m)

c_ls_hf = cos(hf*dw*t_n)
c_ls_lf = cos(lf*dw*t_n)

First, we plot the harmonics with a high frequency sampling (visually continuous, that is).

In [7]:

figsize(12,2.4)
figure(1);plot(t_m,c_hs_hf,’-r’)
ylim((-1.05,+1.05))
grid()
title(r’$\cos(%+3d\omega_1t)$, continuous in red, 50 samples in blue’%(hf,))
figure(2);plot(t_m,c_hs_lf,’-r’)
ylim((-1.05,+1.05))
grid()
title(r’$\cos(%+3d\omega_1 t)$, continuous in red, 50 samples in blue’%(lf,))

Out [7]:

<matplotlib.text.Text at 0x7f4b118dcdd0>

Not surprisingly, the two plots are really different.

In the next plots, we are going to plot the continuous functions in red, and to place a blue dot in every (t,f) point that
was chosen for a low sampling rate.



In [8]:

figure(1) ; plot(t_m,c_hs_hf,’-r’,t_n,c_ls_hf,’ob’)
ylim((-1.05,+1.05));grid();
figure(2) ; plot(t_m,c_hs_lf,’-r’,t_n,c_ls_lf,’ob’)
ylim((-1.05,+1.05));grid();

If you look at the patterns of the dots they seem, at least, very similar. What happens is aliasing!

It’s time to plot only the functions samplead at a low rate:

• the high frequency cosine, sampled at 2.5 samples per second, blue line,
• the low frequency cosine, sampled at 2.5 samples per second, red crosses only.

In [9]:

figure(3) ; grid()
title(’The two cosines, sampled at 2.5 points per second’)
figure(3)
plot(t_n,c_ls_hf,’-b’, linewidth=.33)
plot(t_n,c_ls_lf,’xr’, markersize=8)
xticks((2,4,6,8,10,12,14,16,18,20))
ylim((-1.05,+1.05));

Let’s try zooming into a detail, using blue crosses for the hf cosine and red crosses for the lf cosine:

In [10]:

y = c_ls_lf[N/2-1]
n0 = int(y*100)
n1 = int(n0/5)*5
n2 = n1 + 5
print n1/100., y, n2/100.,
axis([9.5, 10.5, n1/100., n2/100.,]); grid()
plot(t_n,c_ls_hf,’+b’,markersize=20)
plot(t_n,c_ls_lf,’xr’,markersize=20);

-0.95 -0.929776485888 -0.9




	I Aliasing
	Definitions


