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Let’s start with an example...

Consider a cantilever, with varying properties m̄ and EJ,
subjected to a load that is function of both time t and
position x ,

p = p(x, t).

The transverse displacements v will be function of time and
position,

v = v(x, t)

 H 

x m̄ = m̄(x)

N

EJ = EJ(x)v(x, t)

p(x, t)
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... and an hypothesis

To study the previous problem, we introduce an
approximate model by the following hypothesis,

v(x, t) = Ψ(x)Z(t),

that is, the hypothesis of separation of variables
Note that Ψ(x), the shape function, is adimensional, while
Z(t) is dimensionally a generalised displacement, usually
chosen to characterise the structural behaviour.
In our example we can use the displacement of the tip of
the chimney, thus implying that Ψ(H) = 1 because

Z(t) = v(H, t) and

v(H, t) = Ψ(H)Z(t)
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Principle of Virtual Displacements

For a flexible system, the PoVD states that, at equilibrium,

δWE = δWI.

The virtual work of external forces can be easily computed,
the virtual work of internal forces is usually approximated by
the virtual work done by bending moments, that is

δWI ≈
∫
M δχ

where χ is the curvature and δχ the virtual increment of
curvature.

Generalized
SDOF’s

Giacomo Boffi

Continuous
Systems

Vibration Analysis
by Rayleigh’s
Method

Selection of Mode
Shapes

Refinement of
Rayleigh’s
Estimates

δWE

The external forces are p(x, t), N and the forces of inertia
fI; we have, by separation of variables, that δv = Ψ(x)δZ

and we can write

δWp =

∫ H

0

p(x, t)δv dx =

[∫ H

0

p(x, t)Ψ(x) dx

]
δZ = p?(t) δZ

δWInertia =

∫ H

0

−m̄(x)v̈ δv dx =

∫ H

0

−m̄(x)Ψ(x)Z̈Ψ(x) dx δZ

=

[∫ H

0

−m̄(x)Ψ2(x) dx

]
Z̈(t) δZ = m?Z̈ δZ.

The virtual work done by the axial force deserves a separate
treatment...
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δWN

The virtual work of N is δWN = Nδu where δu is the
variation of the vertical displacement of the top of the
chimney.
We start computing the vertical displacement of the top of
the chimney in terms of the rotation of the axis line,
φ ≈ Ψ′(x)Z(t),

u(t) = H −
∫ H

0

cosφ dx =

∫ H

0

(1− cosφ) dx,

substituting the well known approximation cosφ ≈ 1− φ2

2

in the above equation we have

u(t) =

∫ H

0

φ2

2
dx =

∫ H

0

Ψ′2(x)Z2(t)

2
dx

hence

δu =

∫ H

0

Ψ′2(x)Z(t)δZ dx =

∫ H

0

Ψ′2(x) dx ZδZ

and

δWN =

[∫ H

0

Ψ′2(x) dx N

]
Z δZ = k?G Z δZ
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δWInt

Approximating the internal work with the work done by
bending moments, for an infinitesimal slice of beam we
write

dWInt =
1

2
Mv”(x, t) dx =

1

2
MΨ”(x)Z(t) dx

with M = EJ(x)v”(x)

δ(dWInt) = EJ(x)Ψ”2(x)Z(t)δZ dx

integrating

δWInt =

[∫ H

0

EJ(x)Ψ”2(x) dx

]
ZδZ = k? Z δZ
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Remarks

I the shape function must respect the geometrical
boundary conditions of the problem, i.e., both

Ψ1 = x2 and Ψ2 = 1− cos
πx

2H

are accettable shape functions for our example, as
Ψ1(0) = Ψ2(0) = 0 and Ψ′1(0) = Ψ′2(0) = 0

I better results are obtained when the second derivative
of the shape function at least resembles the typical
distribution of bending moments in our problem, so
that between

Ψ′′1 = constant and Ψ2” =
π2

4H2
cos

πx

2H

the second choice is preferable.
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Remarks
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Example

Using Ψ(x) = 1− cos πx2H , with m̄ = constant and
EJ = constant, with a load characteristic of seismic
excitation, p(t) = −m̄v̈g(t),

m? = m̄

∫ H

0

(1− cos
πx

2H
)2 dx = m̄(

3

2
− 4

π
)H

k? = EJ
π4

16H4

∫ H

0

cos2 πx

2H
dx =

π4

32

EJ

H3

k?G = N
π2

4H2

∫ H

0

sin2 πx

2H
dx =

π2

8H
N

p?g = −m̄v̈g(t)

∫ H

0

1− cos
πx

2H
dx = −

(
1− 2

π

)
m̄H v̈g(t)
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Vibration Analysis

I The process of estimating the vibration characteristics
of a complex system is known as vibration analysis.

I We can use our previous results for flexible systems,
based on the SDOF model, to give an estimate of the
natural frequency ω2 = k?/m?

I A different approach, proposed by Lord Rayleigh, starts
from different premises to give the same results but
the Rayleigh’s Quotient method is important because
it offers a better understanding of the vibrational
behaviour, eventually leading to successive refinements
of the first estimate of ω2.
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Rayleigh’s Quotient Method

Our focus will be on the free vibration of a flexible,
undamped system.
I inspired by the free vibrations of a proper SDOF we

write

Z(t) = Z0 sinωt and v(x, t) = Z0Ψ(x) sinωt,

I the displacement and the velocity are in quadrature:
when v is at its maximum v̇ = 0 (hence V = Vmax,
T = 0) and when v = 0 v̇ is at its maximum (hence
V = 0, T = Tmax,

I disregarding damping, the energy of the system is
constant during free vibrations,

Vmax + 0 = 0 + Tmax
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Rayleigh’ s Quotient Method

Now we write the expressions for Vmax and Tmax,

Vmax =
1

2
Z2

0

∫

S

EJ(x)Ψ′′2(x) dx,

Tmax =
1

2
ω2Z2

0

∫

S

m̄(x)Ψ2(x) dx,

equating the two expressions and solving for ω2 we have

ω2 =

∫
S EJ(x)Ψ′′2(x) dx∫
S m̄(x)Ψ2(x) dx

.

Recognizing the expressions we found for k? and m? we
could question the utility of Rayleigh’s Quotient...
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Rayleigh’s Quotient Method

I in Rayleigh’s method we know the specific time
dependency of the inertial forces

fI = −m̄(x)v̈ = m̄(x)ω2Z0Ψ(x) sinωt

fI has the same shape we use for displacements.
I if Ψ were the real shape assumed by the structure in

free vibrations, the displacements v due to a loading
fI = ω2m̄(x)Ψ(x)Z0 should be proportional to Ψ(x)

through a constant factor, with equilibrium respected
in every point of the structure during free vibrations.

I starting from a shape function Ψ0(x), a new shape
function Ψ1 can be determined normalizing the
displacements due to the inertial forces associated with
Ψ0(x), fI = m̄(x)Ψ0(x),

I we are going to demonstrate that the new shape
function is a better approximation of the true mode
shape
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Selection of mode shapes

Given different shape functions Ψi and considering the true
shape of free vibration Ψ, in the former cases equilibrium is
not respected by the structure itself.
To keep inertia induced deformation proportional to Ψi we
must consider the presence of additional elastic constraints.
This leads to the following considerations
I the frequency of vibration of a structure with additional

constraints is higher than the true natural frequency,
I the criterium to discriminate between different shape

functions is: better shape functions give lower
estimates of the natural frequency, the true natural
frequency being a lower bound of all estimates.
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Selection of mode shapes 2

In general the selection of trial shapes goes through two
steps,

1. the analyst considers the flexibilities of different parts
of the structure and the presence of symmetries to
devise an approximate shape,

2. the structure is loaded with constant loads directed as
the assumed displacements, the displacements are
computed and used as the shape function,

of course a little practice helps a lot in the the choice of a
proper pattern of loading...
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Selection of mode shapes 3

p = m(x)

P = M

p = m(x)

p
=
m

(x
)

p = m(x)

(a)

(b) (c)

(d)
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Refinement R00

Choose a trial function Ψ(0)(x) and write

v (0) = Ψ(0)(x)Z(0) sinωt

Vmax =
1

2
Z(0)2

∫
EJΨ(0)′′2 dx

Tmax =
1

2
ω2Z(0)2

∫
m̄Ψ(0)2 dx

our first estimate R00 of ω2 is

ω2 =

∫
EJΨ(0)′′2 dx∫
m̄Ψ(0)2 dx

.
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Refinement R01

We try to give a better estimate of Vmax computing the
external work done by the inertial forces,

p(0) = ω2m̄(x)v (0) = Z(0)ω2Ψ(0)(x)

the deflections due to p(0) are

v (1) = ω2 v
(1)

ω2
= ω2Ψ(1)Z

(1)

ω2
= ω2Ψ(1)Z̄(1),

where we write Z̄(1) because we need to keep the unknown
ω2 in evidence. The maximum strain energy is

Vmax =
1

2

∫
p(0)v (1) dx =

1

2
ω4Z(0)Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx

Equating to our previus estimate of Tmax we find the R01

estimate

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(0) dx∫
m̄(x)Ψ(0)Ψ(1) dx
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Refinement R11

With little additional effort it is possible to compute Tmax
from v (1):

Tmax =
1

2
ω2

∫
m̄(x)v (1)2 dx =

1

2
ω6Z̄(1)2

∫
m̄(x)Ψ(1)2 dx

equating to our last approximation for Vmax we have the
R11 approximation to the frequency of vibration,

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx∫
m̄(x)Ψ(1)Ψ(1) dx

.

Of course the procedure can be extended to compute
better and better estimates of ω2 but usually the
refinements are not extended beyond R11, because it would
be contradictory with the quick estimate nature of the
Rayleigh’s Quotient method and also because R11

estimates are usually very good ones.

Refinement Example
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