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Consider an undamped system with two masses and two degrees of freedom.
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We can separate the two masses, single out the spring forces and, using the
D’Alembert Principle, the inertial forces and, finally, write an equation of
dynamic equilibrium for each mass.
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Consider an undamped system with two masses and two degrees of freedom.

G .

X1 X2

We can separate the two masses, single out the spring forces and, using the
D’'Alembert Principle, the inertial forces and, finally, write an equation of
dynamic equilibrium for each mass.

‘—kz (X1 — XQ)

miX1 + (ki + ko)x1 — koxo = p1(t)

kz(Xz - Xl)‘— - k3x2

MoXo — Koxqy + (k2 + k3)X2 = pg(t)
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With some little rearrangement we have a system of two
linear differential equations in two variables, x;(t) and xo(t):

miXy + (ki + ko)x1 — koxo = p1(t),
MoXo — Kox1 + (k2 + k3)X2 = pg(t).
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Introducing the loading vector p, the vector of inertial
forces f; and the vector of elastic forces fs,

Pl(f)} {f/ 1} {%1}
— , f — ! , f — !

P {Pz(f) I f1.2 ° fs2
we can write a vectorial equation of equilibrium:

fi+fs = p(t).
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It is possible to write the linear relationship between fs and
the vector of displacements x = {X1X2}T in terms of a
matrix product.

In our example it is

|:k1 + ko —ko
fs =

—ky k2+k3]XZKX

introducing the stiffness matrix K.

The stiffness matrix K has a number of rows equal to the
number of elastic forces, i.e., one force for each DOF and a
number of columns equal to the number of the DOF.

The stiffness matrix K is hence a square matrix K
ndofxndof



Analogously, introducing the mass matrix M that, for our

example, is
N mq 0
M=% )
we can write
f, =Mx.

Also the mass matrix M is a square matrix, with number of
rows and columns equal to the number of DOF's.



Finally it is possible to write the equation of motion in
matrix format:
Mx + Kx = p(t).
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Finally it is possible to write the equation of motion in The Eaustion of Motion
Matrices are Linear
Operators

matrix format: e

Mx + Kx = p(t). o

Of course, we can consider the damping forces too, taking into
account the velocity vector x, introducing a damping matrix C

and writing
Mx+ Cx+ Kx = p(t),

however it is now more productive to keep our attention on
undamped systems.



» K is symmetrical, because the elastic force that acts on
mass / due to an unit displacement of mass J, fs; = k;
is equal to the force on mass j due to unit diplacement
of mass I, fs; = kj; in virtue of Betti's theorem.




Generalized

Properties of K el

Giacomo Boffi

» K is symmetrical, because the elastic force that acts on "
mass / due to an unit displacement of mass j, fs; = k; o
is equal to the force on mass j due to unit diplacement -
of mass /, fsj = kj; in virtue of Betti’s theorem.

» The strain energy V for a discrete system can be
written

because the strain energy is positive it follows that K is
a positive definite matrix.



Properties of M

Restricting our discussion to systems whose degrees of
freedom are the displacements of a set of discrete masses,
we have that the mass matrix is a diagonal matrix, with all
its diagonal elements greater than zero. Such a matrix is
symmetrical and definite positive, as well as the stiffness
matrix is symmetrical and definite positive.
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Properties of M

Restricting our discussion to systems whose degrees of
freedom are the displacements of a set of discrete masses,
we have that the mass matrix is a diagonal matrix, with all
its diagonal elements greater than zero. Such a matrix is
symmetrical and definite positive, as well as the stiffness
matrix is symmetrical and definite positive.

En passant, take note that the kinetic energy for a discrete
system is

1
T = EXTM X.
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The findings in the previous two slides can be generalised to
the structural matrices of generic structural systems, with
one exception.



Generalisation of previous results

The findings in the previous two slides can be generalised to
the structural matrices of generic structural systems, with
one exception.

For a general structural system, M could be semi-definite
positive, that is for some particular displacement vector the
kinetic energy could be zero.
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Graphical statement of the problem
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p(t) = posinwt.



Graphical statement of the problem
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k1=2k, kzzk; m1:2m, mo = m,
p(t) = posinwt.

The equations of motion
miX1 + kixi + ko (x1 — x2) = po sinwt,
moXo + ko (X2 — X1) =0.



Graphical statement of the problem

p(t) —

ki ko

L ——— e -
X1 X2

k1=2k, kzzk; m1:2m, mo = m,
p(t) = posinwt.
The equations of motion
miX1 + kixi + ko (x1 — x2) = po sinwt,
moXo + ko (X2 — X1) =0.

. but we prefer the matrix notation ...



because using the matrix notation we can follow the same steps
we used to find the steady-state response of a SDOF system.
First, the equation of motion

m20)'i+k3_1x— 1sint
01 1 1 |XT P
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because using the matrix notation we can follow the same steps
we used to find the steady-state response of a SDOF system.
First, the equation of motion CIEEI

20..k371_ 1't
m01x+ 1 1 |XFPoyg(sinw

substituting x(t) = £sinwt and simplifying sinwt, dividing by k,
with w3 = k/m, 3% = w? /w3 and Ag = po/k the above equation
can be written
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because using the matrix notation we can follow the same steps
we used to find the steady-state response of a SDOF system.
First, the equation of motion CIEEI

2 R T\ IS A UM e
m 0 1 X -1 1 X=ho 0 SN A‘n‘e)‘(‘zm‘p\e

substituting x(t) = £sinwt and simplifying sinwt, dividing by k,
with w3 = k/m, 3% = w? /w3 and Ag = po/k the above equation
can be written

BB el e el

solving for /A gives

e [ i) {7

Ae  (B2-D)(B2-2)  (B-H(E-2)




Normalized displacement

steady-state response for a 2 dof system, harmonic load

T
s
1

€1/Dst
E2lDst == =~

B2=w?/w}




To understand the behaviour of a MDOF system, we start
writing the homogeneous equation of motion,

Mx + Kx=0.
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To understand the behaviour of a MDOF system, we start
writing the homogeneous equation of motion,
Mx+ Kx=0. Caation o Mton

Eigenvalues and
Eigenvectc

The solution, in analogy with the SDOF case, can be
written in terms of a harmonic function of unknown
frequency and, using the concept of separation of variables,
of a constant vector, the so called shape vector ¥:

x(t) = P(Asinwt + Bcoswt).



Homogeneous equation of motion
To understand the behaviour of a MDOF system, we start
writing the homogeneous equation of motion,

Mx + Kx=0.

The solution, in analogy with the SDOF case, can be
written in terms of a harmonic function of unknown
frequency and, using the concept of separation of variables,
of a constant vector, the so called shape vector ¥:

x(t) = P(Asinwt + Bcoswt).

Substituting in the equation of motion, we have

(K — w?M) ¢(Asinwt + Bcoswt) = 0
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The Homogeneous
Equation of Motion



The previous equation must hold for every value of t, so it
can be simplified removing the time dependency:

(K—w’M) 9 =0.

This is a homogeneous linear equation, with unknowns ;
and the coefficients that depends on the parameter w?.



Eigenvalues

The previous equation must hold for every value of t, so it
can be simplified removing the time dependency:

(K—w?M) 9 =0.

This is a homogeneous linear equation, with unknowns ;

and the coefficients that depends on the parameter w?.

Speaking of homogeneous systems, we know that there is
always a trivial solution, 9 = 0, and that different non-zero
solutions are available when the determinant of the matrix
of coefficients is equal to zero,

det (K —w’M) =0
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Eigenvalues S
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The previous equation must hold for every value of t, so it
can be simplified removing the time dependency:
(K—w’M) 9 =0. e

Eigenvalues and
Eigenvectors

This is a homogeneous linear equation, with unknowns ¥; Eigenvectors o

and the coefficients that depends on the parameter w?.

Speaking of homogeneous systems, we know that there is
always a trivial solution, 9 = 0, and that different non-zero
solutions are available when the determinant of the matrix
of coefficients is equal to zero,

det (K —w’M) =0

The eigenvalues of the MDOF system are the values of w?
for which the above equation (the equation of frequencies)
is verified.



Eigenvectors

For a system with N degrees of freedom the expansion of
det (K — w®M) is an algebraic polynomial of degree N in
w?, whose roots, w?, i =1,..., N are all real and greater
than zero if both K and M are positive definite matrices,
condition that is always satisfied by stable structural

systems.
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Eigenvectors

For a system with N degrees of freedom the expansion of
det (K — w®M) is an algebraic polynomial of degree N in
w?, whose roots, w?, i =1,..., N are all real and greater
than zero if both K and M are positive definite matrices,
condition that is always satisfied by stable structural
systems.

Substituting one of the N roots w,.2 in the characteristic
equation,
(K—w/M)9; =0

the resulting system of N — 1 linearly independent equations

can be solved (except for a scale factor) for 9;, the

eigenvector corresponding to the eigenvalue w,-2.
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Eigenvectors

For a system with N degrees of freedom the expansion of
det (K — w®M) is an algebraic polynomial of degree N in
w?, whose roots, w?, i =1,..., N are all real and greater
than zero if both K and M are positive definite matrices,
condition that is always satisfied by stable structural
systems.

Substituting one of the N roots w,.2 in the characteristic
equation,
(K—w/M)9; =0

the resulting system of N — 1 linearly independent equations

can be solved (except for a scale factor) for 9;, the

eigenvector corresponding to the eigenvalue w,-2.

A common choice for the normalisation of the eigenvectors

IS normalisation with respect to the mass matrix,
P/ My, =1
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Initial Conditions

The most general expression (the general integral) for the
displacement of a homogeneous system is

N

x(t) =Y _i(A;sinwt + Bicoswt).
i=1

In the general integral there are 2N unknown constants of
integration, that must be determined in terms of the initial
conditions.

Generalized
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Equation of Motior

Eigenvalues and
Eigenvectors



Generalized

Initial Conditions SDOF's
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Usually the initial conditions are expressed in terms of initial
displacements and initial velocities xo and Xq, so we start deriving
the expression of displacement with respect to time to obtain
x(t) = Z Pw;(A; cosw;t — B;sinwt) ot
Eigenvectors

i=1
and evaluating the displacement and velocity for t =0 it is
N

N
x(0) = Z“I’/B/ = Xo, x(0) = Z'tll,w,-A,- = Xp.
i=1

i=1
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Usually the initial conditions are expressed in terms of initial
displacements and initial velocities xo and Xq, so we start deriving
the expression of displacement with respect to time to obtain

e Homogeneou
Equa

N
(1) =Y Pwi(A coswit — Bisinw;t) Egemucssnd

- Eigenvectors
=1 Eigenvectors are
Orthogonal

and evaluating the displacement and velocity for t =0 it is

N

N
x(0) = Z“I’/B/ = Xo, x(0) = Z'tll,»w,-A,- = Xp.
i=1

i=1

The above equations are vector equations, each one
corresponding to a system of N equations, so we can compute
the 2N constants of integration solving the 2N equations

N N
Z’LPJ‘,‘B,'IXOJ', Z’L/Jj,‘(,d,‘A,‘I)l(oJ, le,,/\/
i=1

i=1



Take into consideration two distinct eigenvalues, w? and w?,
and write the characteristic equation for each eigenvalue:

K"I’r = ng"I’r
K, = w’M1,
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Take into consideration two distinct eigenvalues, w? and w?,
and write the characteristic equation for each eigenvalue:

2
K, = w’M1, :
igenvectors are
2 Orthogonal
K 1”5 = Wg M 1”5 i

premultiply each equation member by the transpose of the
other eigenvector

P Ky, = w29 My,



The term 1/;STK 9, is a scalar, hence

Tk, = (9IKy,) =K 9,
but K is symmetrical, K = K and we have
JKY, =9/ Ky,
By a similar derivation

PIMy, =y My,



Substituting our last identities in the previous equations, we
have

Y/ K = wip/ My,
P/ K, = wip/ My,

subtracting member by member we find that

(W? - w?) P My, =0
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Substituting our last identities in the previous equations, we
have

¥/ K = wip My, i
P K, = wiyp M, E—

Orthogonal

subtracting member by member we find that
(W —w?) /My, =0

We started with the hypothesis that w? # w?, so for every
r # s we have that the corresponding eigenvectors are
orthogonal with respect to the mass matrix

1/1rTM'¢S:0, for r £ s.



The eigenvectors are orthogonal also with respect to the
stiffness matrix:

P KY, =PI MY, =0, forr+#s.



The eigenvectors are orthogonal also with respect to the
stiffness matrix:

TKY, =P My, =0, forr#s.

By definition
M =9 M1,
and
P Ky, = w?M;.



Eigenvectors are a base Generalzed
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The eigenvectors are linearly independent, so for every
vector x we can write

N
X = Z'«/quj.
j=1

The coefficients are readily given by premultiplication of x
by 1[),-TM, because

N
IMx=>"9/My;q =9/ Mg = Mq;
=1

in virtue of the ortogonality of the eigenvectors with respect
to the mass matrix, and the above relationship gives

¥/ Mx

qj = M;



Eigenvectors are a base Generalized
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Generalising our results for the displacement vector to the
acceleration vector, we can write

N N
x(t) =D wa(t).  x(t)= > w;(t),
. >
JN JN
(1) =Y Wgit),  %(t) =D wyg(t).
J=1 j=1

Introducing q(t), the vector of modal coordinates and W,
the eigenvector matrix, whose columns are the eigenvectors,

x(t) = Wa(t), X(t) = Wq(t).



EoM in Modal Coordinates... Generalized
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Substituting the last two equations in the equation of
motion,

MWqg+KWq=p(t)

Eigenvectors are a bas
EoM in Modal Coordinates
21 Condition:

premultiplying by v’
UV MWG+W KWqg=w'p(t)

introducing the so called starred matrices we can finally
write

M*q+K"q=p’(t)
where p*(t) = W p(t), and the scalar equation are

pl=>_ midi+ Y ki



. are N |ndependent equat|onsl Generalized
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We must examine the structure of the starred symbols.
The generic element, with indexes i and j, of the starred
matrices can be expressed in terms of single eigenvectors,

mZ:'(/;I.TM.‘I,J. = ;M BT AR

EoM in Modal Coordinates

ki =9/Ky, — W2, M,.

where §;; is the Kroneker symbol,

o 1 i=yJ
5”_{0 i #



. are N independent equations! e
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We must examine the structure of the starred symbols.
The generic element, with indexes i and j, of the starred
matrices can be expressed in terms of single eigenvectors,

* T igenvectors are a bas
mU = 1/’/ M ¢J = 6UMIV ;oMln Modal Coo‘rdmates
* o0 T — 25 M.
kU_"I}/ K’lllj —(JJl‘éuM,.

Initial Condition:

where §;; is the Kroneker symbol,

1 0=y
Substituting in the equation of motion, with p; = 1[/,-Tp(t)
we have a set of uncoupled equations

M, + w?M;q; = p;(t), i=1,.. ., N



Initial Conditions Reuvisited

The initial displacements can be written in modal
coordinates,

X0 = Wqq
and premultiplying both members by W' M we have the
following relationship:

WU Mx, =W MWq, =Mq,.

Premultiplying by the inverse of M* and taking into
account that M”* is diagonal,

- ¥/ Mx
qo = (M) 1"’TMXO = qio:IT_o
1

and, analogously,
¢1TMX0

gio = M,

Generalized
SDOF's
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e a bas
Modal Coordin:

Initial Conditions



—
ki ko p(t)
L - L -
X1 X2
ki =k, ko =2k; m=2m, m=m;

p(t) = posinwt.

X = {2} , p(t) = {l?o} sinwt,

20 3 -2
wonl2 O ken]? 2



The equation of frequencies is

3k — 2w’m —2k
I—wm = [F 23 )



The equation of frequencies is

3k — 2w’m —2k
I —eml = [0 T

Developing the determinant
2m?)w* — (Tmk)w? 4 (2k%)w® = 0, (1)
with w3 = k/m and w? = Aw3,

2% — TAwg + 2w§ = 0. (2)



Equation of frequencies Generalized
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The equation of frequencies is

_ 2 _

—2k 2k — w?m

Developing the determinant

2m?)w* — (Tmk)w? + (2k?)w® = 0, (1)
with w2 = k/m and w? = Aw3,
2% — TAw3 + 2w = 0. (2)
2

Solving the algebraic equation in w
k7++33

, k7-+/33 )
1= 2 w; = —

w m 4 m 4

2 k 2 k
w? = 0.31386— w3 = 3.18614—
m m



Substituting w? for w? in the first of the characteristic
equations gives the ratio between the components of the
first eigenvector,

k(32 % 0.31386)911 — 2kt = O
while substituting w3 gives

k(3 —2x 3.18614)1/}12 — 2/(’(/}22 =0.



Generalized
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Substituting w? for w? in the first of the characteristic
equations gives the ratio between the components of the
first eigenvector,

k (3 —2 X 0.31386)’1,[/11 — 2/(’1!121 =0

while substituting w% gives
k(3 —2x3.18614)912 — 2kpan = 0.

Solving with the arbitrary assignment 1)1 = ¥2o = 1 gives

the unnormalized eigenvectors,

Ve — +0.84307 v, — ~0.59307
171 +41.00000(" 72 | +1.00000 "



Normalization Generalized
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We compute first My and Mo,

My = %] M,
2m 0] [0.84307
= {0.84307, 1} { 0 m] { 1 }
= {1.68614m, m} {0'81307} — 2.42153m 2 DOF System

My = 1.70346m
the adimensional normalisation factors are
o1 = V2.42153, oo =V 1.70346.

Applying the normalisation factors to the respective unnormalised
eigenvectors and collecting them in a matrix, we have the matrix of
normalized eigenvectors

| +0.54177 —0.45440

V= +0.64262 +0.76618



The modal loading is

p(t) = w7 p(t)

_[+054177 +0.64262] O .
— P 045440 +0.76618| 11[>"Y

_, [+064262)
=Po\to.76618( "



MOdal EOM Generalized

SDOF's

Giacomo Boffi

Substituting its modal expansion for x into the equation of
motion and premultiplying by W' we have the uncoupled
modal equation of motion

ma, + 0.31386k g1 = +0.64262 pg sinwt ABEF Sz
m@g, + 3.18614k g» = +0.76618 pg sinwt

Note that all the terms are dimensionally correct. Dividing
by m both equations, we have

G+ w2q1 = +0.64262 %3 sinwt

G + wiqp = +0.76618 %? sinwt



We set

& = Cisinwt, €=—-w?Csinwt
and substitute in the first modal EoM:
p*
G (wi —w’)sinwt = El sinwt
solving for C;

S
pi_ 1
mw? — w?

G =

with w? = Ki/m = m = Ki/wi:

* 2 K
_p w1 ith A — P1 _ Po — 3
G = Ry 0 — o7 = A 152 with Ay’ = K~ 2.047 P and (1 m
of course
_A@_1 @ _
G =Ag -5 with Ay’ = K2 =0. 2404 % and B> =



Integrals Genrazs
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The integrals, for our loading, are thus

t
qi1(t) = Arsinwit + Bicoswit + Al fln%Z

t
G2(t) = Axsinwat + By coswat + NS fln%
)

2 DOF System

for a system initially at rest

1 . .
ai(t) =AY 5 (sinwt — By sinwi t)
1- 32

1 . .
¢(t) = Agf) 5 (sinwt — Basinwat)
1-33

we are interested in structural degrees of freedom, too... disregarding
transient

AY N 1.10926  0.109271\ po
xi(t) = <1[J11 e +¢12 s sinwt = ( -5 - )—smwt

AW NG 1.31575  0.184245) po
t= = t
x(t) = <'¢21 e +1/l22 iy sinw ( e + — & ) p sinw

=
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To have a feeling of the response in modal coordinates, let's say
that the frequency of the load is w = 2wy.

This implies that 8, = & = % = 6.37226 and

W 2.0 _
B = Wy = J3ised = 0.62771.

2.5 T T
2 - gz (a)/Ast
1.5
1
0.5
0
-0.5
-1
-1.5
-2

2 DOF System

qi/Ast

a =Wyt

In the graph above, the responses are plotted against an

adimensional time coordinate a with a = wgt, while the

ordinates are adimensionalised with respect to Ag = p—;



The response in structural coordinates el

Giacomo Boffi

Using the same normalisation factors, here are the response
functions in terms of x; = Y1191 + Y12g- and

X2 = P21G1 + Y2 qo:

2.5 \

2 DOF System
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