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Introductory Remarks

Today we will study the properties of structural matrices,
that is the operators that relate the vector of system
coordinates x and its time derivatives ẋ and ẍ to the forces
acting on the system nodes, fS, fD and f I, respectively.

In the end, we will see again the solution of a MDOF
problem by superposition, and in general today we will revisit
many of the subjects of our previous class, but you know
that a bit of reiteration is really good for developing minds.
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Structural Matrices

We already met the mass and the stiffness matrix, M and K,
and tangentially we introduced also the dampig matrix C.
We have seen that these matrices express the linear relation
that holds between the vector of system coordinates x and its
time derivatives ẋ and ẍ to the forces acting on the system
nodes, fS, fD and f I, elastic, damping and inertial force vectors.

Mẍ + C ẋ + Kx = p(t)
f I + fD + fS = p(t)

Also, we know that M and K are symmetric and definite
positive, and that it is possible to uncouple the equation of
motion expressing the system coordinates in terms of the
eigenvectors, x(t) =

∑
qiψi , where the qi are the modal

coordinates and the eigenvectors ψi are the non-trivial
solutions to the equation of free vibrations,

(
K− ω2M

)
ψ = 0
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Free Vibrations

From the homogeneous, undamped problem

Mẍ + Kx = 0

introducing separation of variables

x(t) = ψ (A sinωt + B cosωt)

we wrote the homogeneous linear system
(
K− ω2M

)
ψ = 0

whose non-trivial solutions ψi for ω2
i such that∥∥K− ω2

i M
∥∥ = 0 are the eigenvectors.

It was demonstrated that, for each pair of distint
eigenvalues ω2

r and ω2
s , the corresponding eigenvectors obey

the ortogonality condition,

ψT
s Mψr = δrsMr , ψT

s Kψr = δrsω
2
rMr .
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Additional Orthogonality Relationships

From
Kψs = ω2

sMψs

premultiplying by ψT
r KM−1 we have

ψT
r KM−1Kψs = ω2

sψ
T
r Kψs = δrsω

4
rMr ,

premultiplying the first equation by ψT
r KM−1KM−1

ψT
r KM−1KM−1Kψs = ω2

sψ
T
r KM−1Kψs = δrsω

6
rMr

and, generalizing,

ψT
r
(
KM−1

)b Kψs = δrs
(
ω2
r
)b+1

Mr .
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Additional Relationships, 2

From
Mψs = ω−2s Kψs

premultiplying by ψT
r MK−1 we have

ψT
r MK−1Mψs = ω−2s ψT

r Mψs = δrs
Ms

ω2
s

premultiplying the first eq. by ψT
r
(
MK−1

)2
we have

ψT
r
(
MK−1

)2 Mψs = ω−2s ψT
r MK−1Mψs = δrs

Ms

ω4
s

and, generalizing,

ψT
r
(
MK−1

)b Mψs = δrs
Ms

ω2
s
b
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Additional Relationships, 3

Defining Xrs(k) = ψT
r M

(
M−1K

)k
ψs we have





Xrs(0) = ψT
r Mψs = δrs

(
ω2
s
)0Ms

Xrs(1) = ψT
r Kψs = δrs

(
ω2
s
)1Ms

Xrs(2) = ψT
r
(
KM−1

)1 Kψs = δrs
(
ω2
s
)2Ms

· · ·
Xrs(n) = ψT

r
(
KM−1

)n−1 Kψs = δrs
(
ω2
s
)nMs

Observing that
(
M−1K

)−1
=
(
K−1M

)1





Xrs(−1) = ψT
r
(
MK−1

)1 Mψs = δrs
(
ω2
s
)−1Ms

· · ·
Xrs(−n) = ψT

r
(
MK−1

)n Mψs = δrs
(
ω2
s
)−nMs

finally
Xrs(k) = δrsω

2k
s Ms for k = −∞, . . . ,∞.
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Flexibility

Given a system whose state is determined by the
generalized displacements xj of a set of nodes, we define
the flexibility fjk as the deflection, in direction of xj , due to
the application of a unit force in correspondance of the
displacement xk . The matrix F =

[
fjk
]
is the flexibility

matrix.

In our context, the degrees of freedom are associated with
external loads and/or inertial forces.

Given a load vector p =
{
pk
}

(of course the load components act in correspondence of
the degrees of freedom), the individual displacement xj is

xj =
∑

fjkpk

or, in vector notation,

x = Fp
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Example

a b

m, J

x1

x2

1

1

f22

f11

f21
f12

The dynamical system The degrees of freedom

Displacements due to p1 = 1 and due to p2 = 1.
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Elastic Forces

Each node shall be in equilibrium under the action of the
external forces and the elastic forces, hence taking into
accounts all the nodes, all the external forces and all the
elastic forces it is possible to write the vector equation of
equilibrium

p = fS

and, substituting in the previos vector expression of the
displacements

x = F fS

Pre=multiplying by F−1,

F−1x = F−1F fS = fS.
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Stiffness Matrix

The stiffness matrix K can be simply defined as the inverse
of the flexibility matrix F,

K = F−1.

Alternatively the single coefficient kij can be defined as the
external force (equal and opposite to the corresponding
elastic force) applied to the DOF number i that gives place
to a displacement vector x(j) =

{
xn
}
=
{
δnj
}
, where all the

components are equal to zero, except for x (j)j = 1.

∑

n

finknj = Fkj = δij

where ks is the vector containing the coefficients krs .
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Stiffness Matrix

Collecting all the x(j) in a matrix X, it is X = I and we
have, writing all the equations at once,

X = I = F
[
kij
]
,⇒

[
kij
]
= K = F−1.

Finally,
p = fS = Kx.
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Strain Energy

The elastic strain energy V can be written in terms of
displacements and external forces,

V =
1
2
pTx =

1
2





pT Fp︸︷︷︸
x
,

xTK︸︷︷︸
pT

x.

Because the elastic strain energy of a stable system is
always greater than zero, K is a positive definite matrix.
On the other hand, for an unstable system, think of a
compressed beam, there are displacement patterns that are
associated to zero strain energy.
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Symmetry

When two sets of loads, pA and pB , are applied one after
the other to an elastic system; the work done is

VAB =
1
2
pATxA + pATxB +

1
2
pBTxB .

If we revert the order of application the work is

VBA =
1
2
pBTxB + pBTxA +

1
2
pATxA.

The total work being independent of the order of loading,

pATxB = pBTxA.
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Symmetry, 2

Expressing the displacements in terms of F,

pATFpB = pBTFpA,

both terms are scalars so we can write

pATFpB =
(
pBTFpA

)T
= pATFT pB .

Because this equation holds for every p, we conclude that

F = FT ,

and, as the inverse of a symmetric matrix is symmetric,

K = KT .
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A practical consideration

For the kind of structures we mostly deal with in our
examples, problems, exercises and assignments, that is
simple structures, it is usually convenient to compute the
flexibility matrix applying the Principle of Virtual
Displacements (we have seen an example last week) and
inverting the flexibilty to obtain the stiffness matrix,

K = F−1

.
For general structures, large and/or complex, the PVD
approach cannot work in practice, as the number of degrees
of freedom necessary to model the structural behaviour
exceed our ability to do pencil and paper computations...
Different methods are required to construct the stiffness
matrix for such large, complex structures.
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FEM

The most common procedure to construct the matrices that describe the
behaviour of a complex system is the Finite Element Method, or FEM. The
procedure can be sketched in the following terms:
I the structure is subdivided in non-overlapping portions, the finite

elements, bounded by nodes, connected by the same nodes,
I the displacements, strains, stresses in the fe are described in terms of a

linear combination of shape functions, weighted in according to the
nodal displacements, element matrices are computed accordingly

I the element stiffness matrix, Kel establishes a linear relation between
an element nodal displacements and forces,

I the state of the structure can be described in terms of a vector x of
generalized nodal displacements,

I there is a mapping between element and structure DOF’s, iel 7→ r ,
I for each FE, all local kij ’s are contributed to the global stiffness krs ’s,

with i 7→ r and j 7→ s, taking in due consideration differences between
local and global systems of reference.

Note that in the r -th global equation of equilibrium we have internal forces
caused by the nodal displacements of the FE that have nodes iel such that
iel 7→ r , thus implying that global K is a sparse matrix.
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Example

Consider a 2-D inextensible beam element, that has 4
DOF, namely two transverse end displacements x1, x2 and
two end rotations, x3, x4. The element stiffness is
computed using 4 shape functions φi , the transverse
displacement being v(s) =

∑
i φi(s)xi , the different φi are

such all end displacements or rotation are zero, except the
one corresponding to index i .
The shape functions for a beam are

φ1(s) = 1− 3
( s
L

)2
+ 2
( s
L

)3
, φ2(s) = 3

( s
L

)2
− 2
( s
L

)3
,

φ3(s) = s
(
1−

( s
L

)2)
, φ4(s) = s

(( s
L

)2
−
( s
L

))
.
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Example, 2

The element stiffness coefficients can be computed using,
what else, the PVD: we compute the external virtual work
done by a variation δ xi by the force due to a unit
displacement xj , that is kij ,

δWext = δ xi kij ,

the virtual internal work is the work done by the variation of
the curvature, δ xiφ′′i (s) by the bending moment associated
with a unit xj , φ′′j (s)EJ(s),

δWint =

∫ L

0
δ xiφ′′i (s)φ

′′
j (s)EJ(s) ds.
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Example, 3

The equilibrium condition is the equivalence of the internal
and external virtual works, so that simplifying δ xi we have

kij =
∫ L

0
φ′′i (s)φ

′′
j (s)EJ(s) ds.

For EJ = const,

fS =
EJ
L3




12 −12 6L 6L
−12 12 −6L −6L
6L −6L 4L2 2L2

6L −6L 2L2 4L2
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Blackboard Time!

L

2L

EJ EJ

4EJ

x2 x3

x1
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Mass Matrix

The mass matrix maps the nodal accelerations to nodal
inertial forces, and the most common assumption is to
concentrate all masses in nodal point masses, without
rotational inertia, computed lumping a fraction of each
element mass (or a fraction of the supported mass) on all
its bounding nodes.
This procedure leads to a so called lumped mass matrix, a
diagonal matrix with diagonal elements greater than zero
for all the translational degrees of freedom, and diagonal
elements equal to zero for angular degrees of freedom.
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Mass Matrix

The mass matrix is definite positive only if all the structure
DOF’s are translational degrees of freedom, otherwise M is
semi-definite positive and the eigenvalue procedure is not
directly applicable. This problem can be overcome either by
using a consistent mass matrix or using the static
condensation procedure.



Structural
Matrices

Giacomo Boffi

Introductory
Remarks

Structural
Matrices

Evaluation of
Structural
Matrices
Flexibility Matrix

Example

Stiffness Matrix

Strain Energy

Symmetry

Direct Assemblage

Example

Mass Matrix

Consistent Mass Matrix

Discussion

Damping Matrix

Example

Geometric Stiffness

External Loading

Choice of Property
Formulation

Consistent Mass Matrix

A consistent mass matrix is built using the rigorous FEM procedure,
computing the nodal reactions that equilibrate the distributed inertial
forces that develop in the element due to a linear combination of
inertial forces.
Using our beam example as a reference, consider the inertial forces
associated with a single nodal acceleration ẍj , fI,j(s) = m(s)φj(s)ẍj and
denote with mij ẍj the reaction associated with the i-nth degree of
freedom of the element, by the PVD

δ ximij ẍj =
∫
δ xiφi(s)m(s)φj(s) ds ẍj

simplifying

mij =

∫
m(s)φi(s)φj(s) ds.

For m(s) = m = const.

f I =
mL
420




156 54 22L −13L
54 156 13L −22L
22L 13L 4L2 −3L2

−13L −22L −3L2 4L2
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Consistent Mass Matrix, 2

Pro

I some convergence theorem of FEM theory holds only
if the mass matrix is consistent,

I sligtly more accurate results,
I no need for static condensation.

Contra

I M is no more diagonal, heavy computational
aggravation,

I static condensation is computationally beneficial,
inasmuch it reduces the global number of degrees of
freedom.
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Damping Matrix

For each element cij =
∫
c(s)φi(s)φj(s) ds and the damping

matrix C can be assembled from element contributions.
However, using the FEM C? = ΨTCΨ is not diagonal and
hence the modal equations are no more uncoupled!
The alternative is to write directly the global damping
matrix, in terms of the underdetermined coefficients cb and
the infinite sequence of orthogonal matrices we described
previously:

C =
∑

b

cbM
(
M−1K

)b
.
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Damping Matrix

With our definition of C,

C =
∑

b

cbM
(
M−1K

)b
,

assuming normalized eigenvectors, we can write the
individual component of C? = ΨTCΨ

c?ij = ψT
i Cψj = δij

∑

b

cbω
2b
j

due to the additional orthogonality relations, we recognize
that now C? is a diagonal matrix.
Introducing the modal damping Cj we have

Cj = ψT
j Cψj =

∑

b

cbω
2b
j = 2ζjωj

and we can write a system of linear equations in the cb.
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Example

We want a fixed, 5% damping ratio for the first three
modes, taking note that the modal equation of motion is

q̈i + 2ζiωi q̇i + ω2
i qi = p?i

Using
C = c0M + c1K + c2KM−1K

we have

2× 0.05




ω1
ω2
ω3



 =



1 ω2

1 ω4
1

1 ω2
2 ω4

2
1 ω2

3 ω4
3






c0
c1
c2





Solving for the c’s and substituting above, the resulting
damping matrix is orthogonal to every eigenvector of the
system, for the first three modes, leads to a modal damping
ratio that is equal to 5%.
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Example

Computing the coefficients c0, c1 and c2 to have a 5% damping at
frequencies ω1 = 2, ω2 = 5 and ω3 = 8 we have c0 = 1200/9100,
c1 = 159/9100 and c2 = −1/9100.
Writing ζ(ω) =

1
2

( c0
ω

+ c1ω + c2ω
3
)
we can plot the above function,

along with its two term equivalent (c0 = 10/70, c1 = 1/70).

-0.1
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three terms
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Negative damping? No, thank you: use only an even number of terms.
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Geometric Stiffness

A common assumption is based on a linear approximation, for a beam
element

fG = N
L




+1 −1 0 0
−1 +1 0 0
0 0 0 0
0 0 0 0


 x

L

x1 x2

N
Nf1 f2

f2 = −f1
f1L = N (x2 − x1)

It is possible to compute the geometrical stiffness matrix using FEM,
shape functions and PVD,

kG,ij =
∫

N(s)φ′i(s)φ
′
j(s)ds,

for constant N

KG =
N
30L




36 −36 3L 3L
−36 36 −3L −3L
3L −3L 4L2 −L2

3L −3L −L2 4L2
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External Loadings

Following the same line of reasoning that we applied to find
nodal inertial forces, by the PVD and the use of shape
functions we have

pi(t) =
∫

p(s, t)φi(s) ds.

For a constant, uniform load p(s, t) = p = const, applied
on a beam element,

p = pL
{1
2

1
2

L
12 − L

12

}T
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Choice of Property Formulation

Simplified Approach

Some structural parameter is approximated, only
translational DOF’s are retained in dynamic analysis.

Consistent Approach

All structural parameters are computed according to the
FEM, and all DOF’s are retained in dynamic analysis.

If we choose a simplified approach, we must use a
procedure to remove unneeded structural DOF’s from the
model that we use for the dynamic analysis.
Enter the Static Condensation Method.
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Static Condensation

We have, from a FEM analysis, a stiffnes matrix that uses
all nodal DOF’s, and from the lumped mass procedure a
mass matrix were only translational (and maybe a few
rotational) DOF’s are blessed with a non zero diagonal
term.

In this case, we can always rearrange and partition the
displacement vector x in two subvectors:

xA all the DOF’s that are associated with inertial
forces and

xB all the remaining DOF’s not associated with
inertial forces.

x =

{
xA
xB

}
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Static Condensation, 2

After rearranging the DOF’s, we must rearrange also the
rows (equations) and the columns (force contributions) in
the structural matrices, and eventually partition the
matrices so that

{
f I
0

}
=

[
MAA MAB
MBA MBB

]{
ẍA
ẍB

}

fS =

[
KAA KAB
KBA KBB

]{
xA
xB

}

with

MBA = MT
AB = 0, MBB = 0, KBA = KT

AB

Finally we rearrange the loadings vector and write...
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Static Condensation, 3

... the equation of dynamic equilibrium,

pA = MAAẍA + MAB ẍB + KAAxA + KABxB
pB = MBAẍA + MBB ẍB + KBAxA + KBBxB

The highlighted terms are zero vectors, so we can simplify

MAAẍA + KAAxA + KABxB = pA
KBAxA + KBBxB = pB

solving for xB in the 2nd equation and substituting

xB = K−1BBpB −K−1BBKBAxA
pA −KABK−1BBpB = MAAẍA +

(
KAA −KABK−1BBKBA

)
xA
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Static Condensation, 4

Going back to the homogeneous problem, with obvious
positions we can write

(
K− ω2M

)
ψA = 0

but the ψA are only part of the structural eigenvectors,
because in essentially every application we must consider
also the other DOF’s, so we write

ψi =

{
ψA,i
ψB,i

}
, with ψB,i = K−1BBKBAψA,i

Structural
Matrices

Giacomo Boffi

Introductory
Remarks

Structural
Matrices

Evaluation of
Structural
Matrices

Choice of Property
Formulation
Static Condensation

Example

Example

L

2L

EJ EJ

4EJ
x2 x3

x1

K = 2EJ
L3



12 3L 3L
3L 6L2 2L2

3L 2L2 6L2




KBB =
4EJ
L

[
3 1
1 3

]
,K−1BB =

L
32EJ

[
3 −1
−1 3

]
,

KAB =
6EJ
L2

[
1 1

]
,KAB K−1BB KT

AB = 6EJ
L2

L
32EJ

6EJ
L2 × 4 = 9

2
EJ
L3

The matrix K is

K = KAA −KABK−1BBKT
AB = (24− 9

2)
EJ
L3

=
39
2
EJ
L3


