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Introduction

The dynamic analysis of a linear structure can be described as a
three steps procedure

1. FEM model discretization of the structure,

2. solution of the eigenproblem,

3. integration of the uncoupled equations of motion.

The eigenproblem solution is often obtained by some variation of
the Rayleigh-Ritz procedure (e.g., subspace iteration) that is
efficient and accurate.

A proper choice of the initial Ritz base Φ0 is key to
efficiency. An effective reduced base is given by the so
called Lanczos vectors (or Derived Ritz Vectors, DRV).

DRV’s not only form a suitable base for subspace iteration,
but can be directly used in a step-by-step procedure.
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Lanczos Vectors

The Lanczos vectors are obtained in a manner that is similar to
matrix iteration and are constructed in such a way that each one
is orthogonal to all the others.

If you construct a sequence of orthogonal vectors (e.g., using
Gram-Schmidt algorithm) usually each new vector must be
orthogonalized with respect to all the other vectors. Lots of work.

Using the Lanczos procedure, when a new vector is made
orthogonal with respect to the two preceding ones only it is
found that the new vector is orthogonal to all the previous ones.

Beware that most references to Lanczos vectors are about the original
application, solving the eigenproblem for a large symmetrical matrix.
Our application to structural dynamics is a bit different... let’s see
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Computing the 1st DRV

Our initial assumption is that the load vector can be
decoupled, p(x , t) = r0 f (t).

1. Obtain the deflected shape `1
due to the application of the
force shape vector (`’s are
displacements).

K `1 = r0

2. Compute the normalization
factor for the first deflected shape
with respect to the mass matrix
(β is a displacement).

β21 = `
T
1 M`1

1 unit mass

3. Obtain the first derived Ritz
vector normalizing `1 such that
φT1 Mφ = 1 unit of mass (φ’s are
adimensional).

φ1 = 1
β1
`1
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Computing the 2nd DRV

A new load vector is computed, r1 = 1Mφ1, where 1 is a
unit acceleration.

1. Obtain the deflected shape `2
due to the application of the
force shape vector.

K `2 = r1

2. Compute the contribution of
the first vector to `2.

α1 =
φ

T
1 M`2

1 unit mass

3. Purify the displacements `2 (α1

is dimensionally a displacement).

ˆ̀2 = `2 − α1φ1

4. Compute the normalization
factor.

β22 =
ˆ`
T

2 M ˆ`2
1 unit mass

5. Obtain the second derived Ritz
vector normalizing ˆ̀2.

φ2 = 1
β2

ˆ̀2
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Computing the 3rd DRV

The new load vector is r2 = 1Mφ2, 1 being a unit acceleration.

1. Obtain the deflected shape `3. K `3 = r2
2. Purify the displacements `3 where

α2 =
φT

2 M`3
1 unit mass , α1 =

φT
1 M`3

1 unit mass = β2

ˆ̀3 = `3−α2φ2−β2φ1

3. Compute the normalization factor. β23 =
ˆ`
T
3 M ˆ`3

1 unit mass
4. Obtain the third derived Ritz vector

normalizing ˆ̀3.
φ3 = 1

β2
ˆ̀3

Note that it is not necessary to compute the contribution of the first
vector, because it can be demonstrated that

α1 = β2

that is, the contribution of first to third is exactly the normalization
factor we computed to derive the second vector!
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Fourth Vector, etc

The new load vector is r3 = 1Mφ3, 1 being a unit acceleration.

1. Obtain the deflected shape `4. K `4 = r3
2. Purify the displacements `4 where

α3 =
φT

3 M`4
1m

α2 =
φT

2 M`4
1m = β3

α1 =
φT

1 M`4
1m = 0

ˆ̀4 = `4−α3φ3−β3φ2

3. Compute the normalization factor. β=
4

ˆ`
T
4 M ˆ`4

1 unit mass
4. Obtain the fourth derived Ritz vector

normalizing ˆ̀4.
φ4 = 1

β4
ˆ̀4

Note the contributions to φ4 from the previous vectors, in
particular the contribution from φ1 is equal to zero... also the
contribution from the immediately previous vector is equal to β3.
At each step, we have to solve a linear system, that was possibly
put in a triangular format, and to do two double matrix products,
to find αi−1 and βi .
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Fourth Vector, etc

The procedure used for the fourth DRV can be used for all
the subsequent φi , with αi−1 = φTi−1M `i and αi−2 ≡ βi−1,
while all the others purifying coefficients are equal to zero,
αi−3 = · · · = 0.
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The Tridiagonal Matrix

Having computed M < N DRV’s we can write for, e.g., M = 5 that
each non-normalized vector is equal to the displacements minus the
purification terms

φ2β2 = K−1Mφ1 − φ1α1

φ3β3 = K−1Mφ2 − φ2α2 − φ1β2

φ4β4 = K−1Mφ3 − φ3α3 − φ2β3

φ5β5 = K−1Mφ4 − φ4α4 − φ3β4

Collecting the φ in a matrix Φ, the above can be written

K−1MΦ = Φ


α1 β2 0 0 0
β2 α2 β3 0 0
0 β3 α3 β4 0
0 0 β4 α4 β5
0 0 0 β5 α5

 = ΦT

where we have introduce T, a symmetric, tridiagonal matrix where
ti ,i = αi and ti ,i+1 = ti+1,i = βi+1.
Premultiplying by ΦTM

ΦTMK−1MΦ = ΦTMΦ︸ ︷︷ ︸
I

T = T.
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Eigenvectors

Write the unknown in terms of the reduced base Φ and a
vector of Ritz coordinates z, substitute in the undamped
eigenvector equation, premultiply by ΦTMK−1 and apply
the semi-orthogonality relationship written in the previous
slide.

1. ω2MΦ z = KΦ z.
2. ω2ΦTMK−1MΦ︸ ︷︷ ︸

T
z = ΦTM K−1K︸ ︷︷ ︸

I
Φ

︸ ︷︷ ︸
I

z.

3. ω2Tz = I z.
Due to the tridiagonal structure of T, the approximate
eigenvalues can be computed with very small computational
effort.
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Direct Integration

Write the equation of motion for a Rayleigh damped system, with
p(x, t) = r f (t) in terms of the DRV’s and Ritz coordinates z

MΦz̈ + c0MΦż + c1KΦż + KΦz = r f (t)

premultiplying by ΦTMK−1, substituting T and I where appropriate,
doing a series of substitutions on the right member

T(z̈ + c0ż) + I(c1ż + z) = ΦTMK−1r f (t)

= ΦTM`1 f (t)

= ΦTMβ1φ1 f (t)

= β1
{
1 0 0 · · · 0 0

}T
f (t).

Using the DRV’s as a Ritz base, we have a set of mildly coupled
differential equations, where external loadings directly excite the first
mode only, and all the other modes are excited by inertial coupling
only, with rapidly diminishing effects.
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Modal Superposition or direct Integration?

Static effects being fully taken into account by the response of
the first DRV, only a few DRV’s are needed in direct integration
of the equation of motion.
Furthermore special algorithms were devised for the integration
of the tridiagonal equations of motion, that aggravate
computational effort by ≈ 40% only with respect to the
integration of uncoupled equations.

Direct integration in Ritz coordinate is the best choice when the
loading shape is complex and the loading duration is relatively
short.
On the other hand, in applications of earthquake engineering the
loading shape is well behaved and the duration is significantly
longer, so that the savings in integrating the uncoupled equations
of motion outbalance the cost of the eigenvalue extraction.
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Re-Orthogonalization

Denoting with Φi the i columns matrix that collects
theDRV’s computed, we define an orthogonality test vector

wi = φTi+1MΦi =
{
w1 w2 . . . wi−1 wi

}
that expresses the orthogonality of the newly computed
vector with respect to the previous ones.
When one of the components of wi exceeds a given
tolerance, the non-exactly orthogonal φi+1 must be
subjected to a Gram-Schmidt orthogonalization with
respect to all the preceding DRV’s.
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Required Number of DRV

Analogously to the modal participation factor the Ritz
participation factor Γ̂i is defined

Γ̂i =
φTi r

φTi Mφi︸ ︷︷ ︸
1

= φTi r

(note that we divided by a unit mass).
The loading shape can be expressed as a linear combination
of Ritz vector inertial forces,

r =
∑

Γ̂iMφi .

The number of computed DRV’s can be assumed sufficient
when Γ̂i falls below an assigned value.
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Required Number of DRV

Another way to proceed: define an error vector

êi = r −
i∑

j=1

Γ̂jMφj

and an error norm

|êi | =
rT êi
rT r

,

and stop at φi when the error norm falls below a given
value.

BTW, an error norm can be defined for modal analysis too.
Assuming normalized eigenvectors,

ei = r −
i∑

j=1

ΓjMφj , |ei | =
rTei
rT r
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Required Number of DRV

Another way to proceed: define an error vector

êi = r −
i∑

j=1

Γ̂jMφj

and an error norm

|êi | =
rT êi
rT r

,

and stop at φi when the error norm falls below a given
value.

BTW, an error norm can be defined for modal analysis too.
Assuming normalized eigenvectors,

ei = r −
i∑

j=1

ΓjMφj , |ei | =
rTei
rT r



Error Norms, modes

m

m

m

m

k

k

k

k

m

k

x5

x4

x3

x2

x1

In this example, we compare the error norms using modal forces
and DRV forces to approximate 3 different loading shapes.
The building model, on the left, used in this example is the
same that we already used in different examples.

The structural matrices are M = m


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

K = k


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

, F = 1
k


1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5

.
Eigenvalues and eigenvectors matrices are:

Λ =


0.0810 0.0000 0.0000 0.0000 0.0000
0.0000 0.6903 0.0000 0.0000 0.0000
0.0000 0.0000 1.7154 0.0000 0.0000
0.0000 0.0000 0.0000 2.8308 0.0000
0.0000 0.0000 0.0000 0.0000 3.6825

 ,

Ψ =


+0.1699 −0.4557 +0.5969 +0.5485 −0.3260
+0.3260 −0.5969 +0.1699 −0.4557 +0.5485
+0.4557 −0.3260 −0.5485 −0.1699 −0.5969
+0.5485 +0.1699 −0.3260 +0.5969 +0.4557
+0.5969 +0.5485 +0.4557 −0.3260 −0.1699
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Error Norms, DRVs

The DRV’s are computed for three different shapes of force vectors,

r(1) =
{
0 0 0 0 +1

}T
r(2) =

{
0 0 0 −2 1

}T
r(3) =

{
1 1 1 1 +1

}T
.

For the three force shapes, we have of course different sets of DRV’s

Φ(1)=


+0.1348 +0.3023 +0.4529 +0.5679 +0.6023
+0.2697 +0.4966 +0.4529 +0.0406 −0.6884
+0.4045 +0.4750 −0.1132 −0.6693 +0.3872
+0.5394 +0.1296 −0.6794 +0.4665 −0.1147
+0.6742 −0.6478 +0.3397 −0.1014 +0.0143

,

Φ(2)=


−0.1601 −0.0843 +0.2442 +0.6442 +0.7019
−0.3203 −0.0773 +0.5199 +0.4317 −0.6594
−0.4804 +0.1125 +0.5627 −0.6077 +0.2659
−0.6405 +0.5764 −0.4841 +0.1461 −0.0425
−0.4804 −0.8013 −0.3451 −0.0897 −0.0035

,

Φ(3)=


+0.1930 −0.6195 +0.6779 −0.3385 +0.0694
+0.3474 −0.5552 −0.2489 +0.6604 −0.2701
+0.4633 −0.1805 −0.5363 −0.3609 +0.5787
+0.5405 +0.2248 −0.0821 −0.4103 −0.6945
+0.5791 +0.4742 +0.4291 +0.3882 +0.3241

.



Error Norm, comparison

Error Norm

Forces r(1) Forces r(2) Forces r(3)

modes DRV modes DRV modes DRV

1 0.643728 0.545454 0.949965 0.871794 0.120470 0.098360
2 0.342844 0.125874 0.941250 0.108156 0.033292 0.012244
3 0.135151 0.010489 0.695818 0.030495 0.009076 0.000757
4 0.028863 0.000205 0.233867 0.001329 0.001567 0.000011
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Reduced Eigenproblem using DRV base

Using the same structure as in the previous example, we want to
compute the first 3 eigenpairs using the first 3 DRV’s computed for
r = r(3) as a reduced Ritz base, with the understanding that r(3) is a
reasonable approximation to inertial forces in mode number 1.
The DRV’s used were printed in a previous slide, the reduced mass
matrix is the unit matrix (by orthonormalization of the DRV’s), the
reduced stiffness is

K̂ = ΦTKΦ =

+0.0820 −0.0253 +0.0093
−0.0253 +0.7548 −0.2757
+0.0093 −0.2757 +1.8688

 .
The eigenproblem, in Ritz coordinates is

K̂ z = ω2z.

A comparison between exact solution and Ritz approximation is in the
next slide.
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Reduced Eigenproblem using DRV base,
comparison

In the following, hatted matrices refer to approximate
results.

The eigenvalues matrices are

Λ=

0.0810 0 0
0 0.6903 0
0 0 1.7154

 and Λ̂=

0.0810 0 0
0 0.6911 0
0 0 1.9334

.

The eigenvectors matrices are

Ψ=


+0.1699 −0.4557 +0.5969
+0.3260 −0.5969 +0.1699
+0.4557 −0.3260 −0.5485
+0.5485 +0.1699 −0.3260
+0.5969 +0.5485 +0.4557

 and Ψ̂=


+0.1699 −0.4553 +0.8028
+0.3260 −0.6098 −0.1130
+0.4557 −0.3150 −0.4774
+0.5485 +0.1800 −0.1269
+0.5969 +0.5378 +0.3143

.
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Introduction to Numerical Integration

When we reviewed the numerical integration methods, we
said that some methods are unconditionally stable and
others are conditionally stable, that is the response
blows-out if the time step h is great with respect to the
natural period of vibration, h > Tn

a , where a is a constant
that depends on the numerical algorithm.
For MDOF systems, the relevant T is the one associated
with the highest mode present in the structural model, so
for moderately complex structures it becomes impossible to
use a conditionally stable algorithm.
In the following, two unconditionally stable algorithms will
be analyzed, i.e., the constant acceleration method, that
we already know, and the new Wilson’s θ method.
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Constant Acceleration, preliminaries

I The initial conditions are known:

x0, ẋ0, p0, → ẍ0 = M−1(p0 − C ẋ0 −Kx0).

I With a fixed time step h, compute the constant
matrices

A = 2C +
4
h
M, B = 2M, K+ =

2
h
C +

4
h2

M.
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Constant Acceleration, stepping

I Starting with i = 0, compute the effective force
increment,

∆p̂i = pi+1 − pi + Aẋi + Bẍi ,

the tangent stiffness Ki and the current incremental
stiffness,

K̂i = Ki + K+.

I For linear systems, it is

∆xi = K̂
−1
i ∆p̂i ,

for a non linear system ∆xi is produced by the
modified Newton-Raphson iteration procedure.

I The state vectors at the end of the step are

xi+1 = xi + ∆xi , ẋi+1 = 2
∆xi
h
− ẋi
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Constant Acceleration, new step

I Increment the step index, i = i + 1.
I Compute the accelerations using the equation of

equilibrium,

ẍi = M−1(pi − C ẋi −Kxi).

I Repeat the sub-steps detailed in the previous slide.
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Modified Newton-Raphson

I Initialization

y0 = xi fS,0 = fS(system state)

∆R1 = ∆p̂i KT = K̂i

I For j = 1, 2, . . .

KT∆yj = ∆Rj →∆yj (test for convergence)
∆ẏj = · · ·

yj = yj−1 + ∆yj , ẏj = ẏj−1 + ∆ẏj
fS,j = fS(updated system state)

∆fS,j = fS,j − fS,j−1 − (KT −Ki)∆yj
∆Rj+1 = ∆Rj −∆fS,j

I Return the value ∆xi = yj − xi

A suitable convergence test is

∆RT
j ∆yj

∆p̂T
i ∆xi ,j

≤ tol
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Wilson’s Theta Method

The linear acceleration method is significantly more
accurate than the constant acceleration method, meaning
that it is possible to use a longer time step to compute the
response of a SDOF system within a required accuracy.
On the other hand, the method is not safely applicable to
MDOF systems due to its numerical instability.

Professor Ed Wilson demonstrated that simple variations of
the linear acceleration method can be made unconditionally
stable and found the most accurate in this family of
algorithms, collectively known as Wilson’s θ methods.



Derived Ritz
Vectors,
Numerical
Integration

Multiple support
excitation

Giacomo Boffi

Derived Ritz
Vectors

Numerical
Integration
Introduction

Constant Acceleration

Wilson’s Theta Method

Multiple Support
Excitation

Wilson’s Theta Method

The linear acceleration method is significantly more
accurate than the constant acceleration method, meaning
that it is possible to use a longer time step to compute the
response of a SDOF system within a required accuracy.
On the other hand, the method is not safely applicable to
MDOF systems due to its numerical instability.
Professor Ed Wilson demonstrated that simple variations of
the linear acceleration method can be made unconditionally
stable and found the most accurate in this family of
algorithms, collectively known as Wilson’s θ methods.
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Wilson’s θ method

Wilson’s idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...
The procedure is really simple,

1. solve the incremental equation of equilibrium using the
linear acceleration algorithm, with an extended time
step

ĥ = θ h, θ ≥ 1,

2. compute the extended acceleration increment
∆̂ẍ at t̂ = ti + ĥ,

3. scale the extended acceleration increment under the
assumption of linear acceleration, ∆ẍ = 1

θ ∆̂ẍ,
4. compute the velocity and displacements increment

using the reduced value of the increment of
acceleration.
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Wilson’s θ method

Wilson’s idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...
The procedure is really simple,

1. solve the incremental equation of equilibrium using the
linear acceleration algorithm, with an extended time
step

ĥ = θ h, θ ≥ 1,

2. compute the extended acceleration increment
∆̂ẍ at t̂ = ti + ĥ,

3. scale the extended acceleration increment under the
assumption of linear acceleration, ∆ẍ = 1

θ ∆̂ẍ,
4. compute the velocity and displacements increment

using the reduced value of the increment of
acceleration.
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Wilson’s θ method

Wilson’s idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...
The procedure is really simple,

1. solve the incremental equation of equilibrium using the
linear acceleration algorithm, with an extended time
step

ĥ = θ h, θ ≥ 1,

2. compute the extended acceleration increment
∆̂ẍ at t̂ = ti + ĥ,

3. scale the extended acceleration increment under the
assumption of linear acceleration, ∆ẍ = 1

θ ∆̂ẍ,
4. compute the velocity and displacements increment

using the reduced value of the increment of
acceleration.
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Wilson’s θ method

Wilson’s idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...
The procedure is really simple,

1. solve the incremental equation of equilibrium using the
linear acceleration algorithm, with an extended time
step

ĥ = θ h, θ ≥ 1,

2. compute the extended acceleration increment
∆̂ẍ at t̂ = ti + ĥ,

3. scale the extended acceleration increment under the
assumption of linear acceleration, ∆ẍ = 1

θ ∆̂ẍ,

4. compute the velocity and displacements increment
using the reduced value of the increment of
acceleration.
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Wilson’s θ method

Wilson’s idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...
The procedure is really simple,

1. solve the incremental equation of equilibrium using the
linear acceleration algorithm, with an extended time
step

ĥ = θ h, θ ≥ 1,

2. compute the extended acceleration increment
∆̂ẍ at t̂ = ti + ĥ,

3. scale the extended acceleration increment under the
assumption of linear acceleration, ∆ẍ = 1

θ ∆̂ẍ,
4. compute the velocity and displacements increment

using the reduced value of the increment of
acceleration.
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Wilson’s θ method description

Using the same symbols used for constant acceleration.
First of all, for given initial conditions x0 and ẋ0, initialize
the procedure computing the constants (matrices) used in
the following procedure and the initial acceleration,

ẍ0 = M−1(p0 − C ẋ0 −Kx0),

A = 6M/ĥ + 3C,

B = 3M + ĥC/2,

K+ = 3C/ĥ + 6M/ĥ2.



Derived Ritz
Vectors,
Numerical
Integration

Multiple support
excitation

Giacomo Boffi

Derived Ritz
Vectors

Numerical
Integration
Introduction

Constant Acceleration

Wilson’s Theta Method

Multiple Support
Excitation

Wilson’s θ method description

Starting with i = 0,
1. update the tangent stiffness, Ki = K(x,ẋi) and the

effective stiffness, K̂i = Ki + K+,
compute ∆̂p̂i = θ∆pi + Aẋi + Bẍi ,
with ∆pi = p(ti + h)− p(ti)

2. solve K̂i∆̂x = ∆̂p̂i , compute

∆̂ẍ = 6
∆̂x
ĥ2
− 6

ẋi
ĥ
− 3ẍi → ∆ẍ =

1
θ

∆̂ẍ

3. compute

∆ẋ = (ẍi +
1
2

∆ẍ)h

∆x = ẋih + (
1
2
ẍi +

1
6

∆ẍ)h2

4. update state, xi+1 = xi + ∆x, ẋi+1 = ẋi + ∆ẋ,
i = i + 1, iterate restarting from 1.
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Wilson’s θ method description

Starting with i = 0,
1. update the tangent stiffness, Ki = K(x,ẋi) and the

effective stiffness, K̂i = Ki + K+,
compute ∆̂p̂i = θ∆pi + Aẋi + Bẍi ,
with ∆pi = p(ti + h)− p(ti)

2. solve K̂i∆̂x = ∆̂p̂i , compute

∆̂ẍ = 6
∆̂x
ĥ2
− 6

ẋi
ĥ
− 3ẍi → ∆ẍ =

1
θ

∆̂ẍ

3. compute

∆ẋ = (ẍi +
1
2

∆ẍ)h

∆x = ẋih + (
1
2
ẍi +

1
6

∆ẍ)h2

4. update state, xi+1 = xi + ∆x, ẋi+1 = ẋi + ∆ẋ,
i = i + 1, iterate restarting from 1.
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Wilson’s θ method description

Starting with i = 0,
1. update the tangent stiffness, Ki = K(x,ẋi) and the

effective stiffness, K̂i = Ki + K+,
compute ∆̂p̂i = θ∆pi + Aẋi + Bẍi ,
with ∆pi = p(ti + h)− p(ti)

2. solve K̂i∆̂x = ∆̂p̂i , compute

∆̂ẍ = 6
∆̂x
ĥ2
− 6

ẋi
ĥ
− 3ẍi → ∆ẍ =

1
θ

∆̂ẍ

3. compute

∆ẋ = (ẍi +
1
2

∆ẍ)h

∆x = ẋih + (
1
2
ẍi +

1
6

∆ẍ)h2

4. update state, xi+1 = xi + ∆x, ẋi+1 = ẋi + ∆ẋ,
i = i + 1, iterate restarting from 1.
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Wilson’s θ method description

Starting with i = 0,
1. update the tangent stiffness, Ki = K(x,ẋi) and the

effective stiffness, K̂i = Ki + K+,
compute ∆̂p̂i = θ∆pi + Aẋi + Bẍi ,
with ∆pi = p(ti + h)− p(ti)

2. solve K̂i∆̂x = ∆̂p̂i , compute

∆̂ẍ = 6
∆̂x
ĥ2
− 6

ẋi
ĥ
− 3ẍi → ∆ẍ =

1
θ

∆̂ẍ

3. compute

∆ẋ = (ẍi +
1
2

∆ẍ)h

∆x = ẋih + (
1
2
ẍi +

1
6

∆ẍ)h2

4. update state, xi+1 = xi + ∆x, ẋi+1 = ẋi + ∆ẋ,
i = i + 1, iterate restarting from 1.
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A final remark

The Theta Method is unconditionally stable for θ > 1.37
and it achieves the maximum accuracy for θ = 1.42.
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Definitions

Consider the case of a structure where the supports are
subjected to assigned displacements histories, ui = ui(t).
To solve this problem, we start with augmenting the
degrees of freedom with the support displacements.
We denote the superstructure DOF with xT , the support
DOF with xg and we have a global displacement vector x,

x =

{
xT
xg

}
.
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The Equation of Motion

Damping effects will be introduced at the end of our
manipulations.
The equation of motion is[

M Mg

MT
g Mgg

]{
ẍT
ẍg

}
+

[
K Kg

KT
g Kgg

]{
xT
xg

}
=

{
0
pg

}
where M and K are the usual structural matrices, while Mg
and Mgg are, in the common case of a lumped mass model,
zero matrices.
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Static Components

We decompose the vector of displacements into two
contributions, a static contribution and a dynamic
contribution, attributing the given support displacements to
the static contribution.{

xT
xg

}
=

{
xs
xg

}
+

{
x
0

}
where x is the usual relative displacements vector.



Derived Ritz
Vectors,
Numerical
Integration

Multiple support
excitation

Giacomo Boffi

Derived Ritz
Vectors

Numerical
Integration

Multiple Support
Excitation
Definitions

Equation of motion

EOM Example

Response Analysis

Response Analysis Example

Determination of static components

Because the xg are given, we can write two matricial
equations that give us the static superstructure
displacements and the forces we must apply to the
supports,

Kxs + Kgxg = 0

KT
g xs + Kggxg = pg

From the first equation we have

xs = −K−1Kgxg

and from the second we have

pg = (Kgg −KT
g K−1Kg)xg

The support forces are zero when the structure is isostatic
or the structure is subjected to a rigid motion.
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Determination of static components

Because the xg are given, we can write two matricial
equations that give us the static superstructure
displacements and the forces we must apply to the
supports,

Kxs + Kgxg = 0

KT
g xs + Kggxg = pg

From the first equation we have

xs = −K−1Kgxg

and from the second we have

pg = (Kgg −KT
g K−1Kg)xg

The support forces are zero when the structure is isostatic
or the structure is subjected to a rigid motion.
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Response Analysis Example

Going back to the EOM

We need the first row of the two matrix equation of
equilibrium,[

M Mg

MT
g Mgg

]{
ẍT
ẍg

}
+

[
K Kg

KT
g Kgg

]{
xT
xg

}
=

{
0
pg

}
substituting xT = xs + x in the first row

Mẍ + Mẍs + Mg ẍg + Kx + Kxs + Kgxg = 0

by the equation of static equilibrium, Kxs + Kgxg = 0 we
can simplify

Mẍ+Mẍs+Mg ẍg+Kx = Mẍ+(Mg−MK−1Kg)ẍg+Kx = 0.
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Influence matrix

The equation of motion is

Mẍ + (Mg −MK−1Kg)ẍg + Kx = 0.

We define the influence matrix E by

E = −K−1Kg,

and write, reintroducing the damping effects,

Mẍ + Cẋ + Kx = −(ME + Mg)ẍg − (CE + Cg)ẋg
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Simplification of the EOM

For a lumped mass model, Mg = 0 and also the efficace
forces due to damping are really small with respect to the
inertial ones, and with this understanding we write

Mẍ + Cẋ + Kx = −MEẍg.
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Significance of E

E can be understood as a collection of vectors ei ,
i = 1, . . . ,Ng (Ng being the number of DOF associated
with the support motion),

E =
[
e1 e2 · · · eNg

]
where the individual ei collects the displacements in all the
DOF of the superstructure due to imposing a unit
displacement to the support DOF number i .
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Significance of E

This understanding means that the influence matrix can be
computed column by column,
I in the general case by releasing one support DOF,

applying a unit force to the released DOF, computing
all the displacements and scaling the displacements so
that the support displacement component is made
equal to 1,

I or in the case of an isostatic component by examining
the instantaneous motion of the 1 DOF rigid system
that we obtain by releasing one constraint.
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EOM example
m m

B
vB = vB(t)

x3

x1x2A

x1x2A

We want to determine the influence matrix E for the
structure in the figure above, subjected to an assigned motion in B.

First step, put in evidence another degree of freedom x3
corresponding to the assigned vertical motion of the
support in B and compute, using e.g. the PVD, the
flexibility matrix:

F =
L3

6EJ

54.0000 8.0000 28.0000
8.0000 2.0000 5.0000
28.0000 5.0000 16.0000

 .
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EOM example

The stiffness matrix is found by inversion,

K =
3EJ
13L3

 +7.0000 +12.0000 −16.0000
+12.0000 +80.0000 −46.0000
−16.0000 −46.0000 +44.0000

 .
We are interested in the partitions Kxx and Kxg:

Kxx =
3EJ
13L3

[
+7.0000 +12.0000.0000

+12.0000 +80.0000.0000

]
, Kxg =

3EJ
13L3

[
−16
−46

]
.

The influence matrix is

E = −K−1xx Kxg =
1
16

[
28.0000
5.0000

]
,

please compare E with the last column of the flexibility
matrix, F.
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Response analysis

Consider the vector of support accelerations,

ẍg =
{
ẍgl , l = 1, . . . ,Ng

}
and the effective load vector

peff = −MEẍg = −
Ng∑
l=1

Mel ẍgl(t).

We can write the modal equation of motion for mode
number n

q̈n + 2ζnωnq̇n + ω2
nqn = −

Ng∑
l=1

Γnl ẍgl(t)

where

Γnl =
ψT
n Mel
M∗n
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Response analysis, continued

The solution qn(t) is hence, with the notation of last lesson,

qn(t) =

Ng∑
l=1

ΓnlDnl(t),

Dnl being the response function for ζn and ωn due to the
ground excitation ẍgl .
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Response analysis, continued

The total displacements xT are given by two contributions,
xT = xs + x, the expression of the contributions are

xs = Exg(t) =

Ng∑
l=1

elxgl(t),

x =

N∑
n=1

Ng∑
l=1

ψnΓnlDnl(t),

and finally we have

xT =

Ng∑
l=1

elxgl(t) +

N∑
n=1

Ng∑
l=1

ψnΓnlDnl(t).
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Forces

For a computer program, the easiest way to compute the
nodal forces is

a) compute, element by element, the nodal displacements
by xT and xg,

b) use the element stiffness matrix compute nodal forces,

c) assemble element nodal loads into global nodal loads.

That said, let’s see the analytical development...
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Forces

The forces on superstructure nodes due to deformations are

fs =

N∑
n=1

Ng∑
l=1

ΓnlKψnDnl(t)

fs =

N∑
n=1

Ng∑
l=1

(ΓnlMψn)(ω2
nDnl(t)) =

∑∑
rnlAnl(t)

the forces on support

fgs = KT
g xT + Kggxg = KT

g x + pg

or, using xs = Exg

fgs = (

Ng∑
l=1

KT
g el + Kgg,l)xgl +

N∑
n=1

Ng∑
l=1

ΓnlKT
g ψnDnl(t)
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Forces

The structure response components must be computed
considering the structure loaded by all the nodal forces,

f =

{
fs
fgs

}
.
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Example

1,7 2,93,6 4,8 5,10

m m

L L L L

The dynamic DOF are x1 and x2, vertical displacements of
the two equal masses, x3, x4, x5 are the imposed vertical
displacements of the supports, x6, . . . , x10 are the rotational
degrees of freedom (removed by static condensation).
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Example

The stiffness matrix for the 10x10 model is

K10×10 =
EJ
L3



12 −12 0 0 0 6L 6L 0 0 0
−12 24 −12 0 0 −6L 0 6L 0 0
0 −12 24 −12 0 0 −6L 0 6L 0
0 0 −12 24 −12 0 0 −6L 0 6L
0 0 0 −12 12 0 0 0 −6L −6L
6L −6L 0 0 0 4L2 2L2 0 0 0
6L 0 −6L 0 0 2L2 8L2 2L2 0 0
0 6L 0 −6L 0 0 2L2 8L2 2L2 0
0 0 6L 0 −6L 0 0 2L2 8L2 2L2
0 0 0 6L −6L 0 0 0 2L2 4L2
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Example

The first product of the static condensation procedure is
the linear mapping between translational and rotational
degrees of freedom, given by

~φ =
1

56L

[ 71 −90 24 −6 1
26 12 −48 12 −2
−7 42 0 −42 7
2 −12 48 −12 −26
−1 6 −24 90 −71

]
~x.
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Example

Following static condensation and reordering rows and
columns, the partitioned stiffness matrices are

K =
EJ
28L3

[ 276 108
108 276 ],

Kg =
EJ
28L3

[−102 −264 −18
−18 −264 −102

]
,

Kgg =
EJ
28L3

[
45 72 3
72 384 72
3 72 45

]
.

The influence matrix is

E = K−1Kg =
1
32

[ 13 22 −3
−3 22 13

]
.
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Example

The eigenvector matrix is

Ψ =
[−1 1

1 1

]
the matrix of modal masses is

M? = ΨTMΨ = m[ 2 0
0 2 ]

the matrix of the non normalized modal participation
coefficients is

L = ΨTME = m
[
− 1

2 0 1
2

5
16

11
8

5
16

]
and, finally, the matrix of modal participation factors,

Γ = (M?)−1L =

[
− 1

4 0 1
4

5
32

11
16

5
32

]
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Example

Denoting with Dij = Dij(t) the response function for mode
i due to ground excitation ẍgj , the response can be written

x =

(
ψ11(− 1

4D11+
1
4D13)+ψ12( 5

32D21+
5
32D23+

11
16D22)

ψ21(− 1
4D11+

1
4D13)+ψ22( 5

32D21+
5
32D23+

11
16D22)

)
=

(
− 1

4D13+
1
4D11+

5
32D21+

5
32D23+

11
16D22

− 1
4D11+

1
4D13+

5
32D21+

5
32D23+

11
16D22

)
.
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