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Introduction

The dynamic analysis of a linear structure can be described as a
three steps procedure

1. FEM model discretization of the structure,
2. solution of the eigenproblem,
3. integration of the uncoupled equations of motion.

The eigenproblem solution is often obtained by some variation of
the Rayleigh-Ritz procedure (e.g., subspace iteration) that is
efficient and accurate.
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1. FEM model discretization of the structure,
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2. solution of the eigenproblem, e

3. integration of the uncoupled equations of motion.

The eigenproblem solution is often obtained by some variation of o
the Rayleigh-Ritz procedure (e.g., subspace iteration) that is
efficient and accurate.

A proper choice of the initial Ritz base ®g is key to
efficiency. An effective reduced base is given by the so
called Lanczos vectors (or Derived Ritz Vectors, DRV).
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1. FEM model discretization of the structure,
2. solution of the eigenproblem,

3. integration of the uncoupled equations of motion.

The eigenproblem solution is often obtained by some variation of
the Rayleigh-Ritz procedure (e.g., subspace iteration) that is
efficient and accurate.

A proper choice of the initial Ritz base ®g is key to
efficiency. An effective reduced base is given by the so
called Lanczos vectors (or Derived Ritz Vectors, DRV).

DRV’s not only form a suitable base for subspace iteration,
but can be directly used in a step-by-step procedure.



The Lanczos vectors are obtained in a manner that is similar to
matrix iteration and are constructed in such a way that each one
is orthogonal to all the others.



Lanczos Vectors

The Lanczos vectors are obtained in a manner that is similar to
matrix iteration and are constructed in such a way that each one
is orthogonal to all the others.

If you construct a sequence of orthogonal vectors (e.g., using
Gram-Schmidt algorithm) usually each new vector must be

orthogonalized with respect to all the other vectors. Lots of work.
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The Lanczos vectors are obtained in a manner that is similar to
matrix iteration and are constructed in such a way that each one
is orthogonal to all the others.

If you construct a sequence of orthogonal vectors (e.g., using B
Gram-Schmidt algorithm) usually each new vector must be (DS

orthogonalized with respect to all the other vectors. Lots of work. Renurd

Using the Lanczos procedure, when a new vector is made
orthogonal with respect to the two preceding ones only it is
found that the new vector is orthogonal to all the previous ones.
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The Lanczos vectors are obtained in a manner that is similar to
matrix iteration and are constructed in such a way that each one

is orthogonal to all the others.

If you construct a sequence of orthogonal vectors (e.g., using S
Gram-Schmidt algorithm) usually each new vector must be e
orthogonalized with respect to all the other vectors. Lots of work. Reauired Nun

Using the Lanczos procedure, when a new vector is made
orthogonal with respect to the two preceding ones only it is
found that the new vector is orthogonal to all the previous ones.

Beware that most references to Lanczos vectors are about the original
application, solving the eigenproblem for a large symmetrical matrix.
Our application to structural dynamics is a bit different... let's see
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Our initial assumption is that the load vector can be Multiple support
deCOUp|ed, P(X, t) =1To f(t) Giacomo Boffi

1. Obtain the deflected shape £; Ké =rg

due to the application of the e

force shape vector (£'s are e ot by g
displacements). " e

T DRV
2.  Compute the normalization B3 = % S
factor for the first deflected shape

with respect to the mass matrix

(B is a displacement).

3. Obtain the first derived Ritz 6=zl

vector normalizing £; such that
@, M@ = 1 unit of mass (¢'s are
adimensional).



Computing the 2" DRV

A new load vector is computed, r; = 1M ¢4, where 1 is a

unit acceleration.

1. Obtain the deflected shape &£
due to the application of the
force shape vector.

2. Compute the contribution of
the first vector to &».

3. Purify the displacements £, (o
is dimensionally a displacement).

4.  Compute the normalization
factor.

5. Obtain the second derived Ritz
vector normalizing 22.

Keg =1r
_ ¢/Me
QA1 = Tini mazss
L=t —a¢,
_ UM

62
2 7 1 unit mass

¢2 = 5%52
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normalizing £.
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1. Obtain the deflected shape £s. Ké=r,
Purify the displacements €3 where U3 = 43—, — B Introduction
_eMe | oME ot
Q2 =7 u2nit mass ' X1 = lulnit mass 6 T Th Tu_‘dj _ryh ‘,pl
- 2 LMY Solution Strategi
3. Compute the normalization factor. B; = m Re-orthogonalizatio
4. Obtain the third derived Ritz vector o3 = éh S

normalizing £s.

Note that it is not necessary to compute the contribution of the first
vector, because it can be demonstrated that

a; = [

that is, the contribution of first to third is exactly the normalization
factor we computed to derive the second vector!
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1. Obtain the deflected shape £4. Kés =r3
Purify the displacements €4 where by =l — a3 — B30,
— ¢?TM£4 Introduction
a3 = —g Derived Ritz Vec
T
M The procedure by example
a2 = %17’7184 = 63 The Tridiagonal Matrix
T Solution Strategie
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3. Compute the normalization factor. Bi T mass
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1. Obtain the deflected shape £4. Kés =r3
Purify the displacements €4 where b =4 —aszps — B¢,
o = BML o
The procedure by example
QA = ¢2 Me4 = 63 Tu ag m\ym “’
ap = ¢1 1|\,7,7I£4 — O [‘ - \m\ t
3. Compute the normalization factor. fory fjmlylmg‘;s o
4.  Obtain the fourth derived Ritz vector by = =

L. ~ 4
normalizing £4.

Note the contributions to ¢, from the previous vectors, in
particular the contribution from ¢, is equal to zero... also the
contribution from the immediately previous vector is equal to Bs.
At each step, we have to solve a linear system, that was possibly
put in a triangular format, and to do two double matrix products,
to find a;_1 and G,.



The procedure used for the fourth DRV can be used for all
the subsequent ¢;, with aj_1 = d),-T_lM £ and a;_» = Gi_1,
while all the others purifying coefficients are equal to zero,
aj_3=---=0.

Multiple Support
Excitation



The Tridiagonal Matrix

Having computed M < N DRV's we can write for, e.g., M =5 that
each non-normalized vector is equal to the displacements minus the
purification terms

$:0: = K 'M@; — 1o

s0s = K™'M &, — d02 — 9152

.04 = K™'M s — P30z — P03

(17555 = KilM 474 - ¢4CX4 - ¢3ﬁ4
Collecting the ¢ in a matrix ®, the above can be written

(o5} ﬁz 0 0 0
B a2 Bz 0 O
K!'Mé=0d|0 B a3 B O
0 0 Bsa oa PBs
0 0 0 ﬁ5 Qs
where we have introduce T, a symmetric, tridiagonal matrix where
tii =a; and tjir1 = tip1i = Biy1.
Premultiplying by ®'M
® ' MK'Mo=0"MOT=T.
|

=0T
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Eigenvectors

Write the unknown in terms of the reduced base ® and a
vector of Ritz coordinates z, substitute in the undamped
eigenvector equation, premultiply by @ "M K™t and apply
the semi-orthogonality relationship written in the previous
slide.

1. W’°Mbz=Kodz.
2. WO "MK Mbz=0d" MK K o z
~—_—— N——

T I
—_———

|
3. wTz=1lz

Due to the tridiagonal structure of T, the approximate
eigenvalues can be computed with very small computational
effort.
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Write the equation of motion for a Rayleigh damped system, with Gl i
p(x, t) = rf(t) in terms of the DRV'’s and Ritz coordinates z

Moz + coM®z + o Kdz + Kbz = r (1)

D d Ritz Vector

premultiplying by @M K™, substituting T and | where appropriate, SEHRE
doing a series of substitutions on the right member e

Solution Strategies

Re-orthogonalizatior

T(Z+ c0z) +(ciz+2) = @ "MK 'rf(t) Requred Nor
=o' M f(t) .
= ®"MB:¢, f(1)
=6{1 0 0 -~ 0 0} f(b).
Using the DRV'’s as a Ritz base, we have a set of mildly coupled
differential equations, where external loadings directly excite the first

mode only, and all the other modes are excited by inertial coupling
only, with rapidly diminishing effects.
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Static effects being fully taken into account by the response of
the first DRV, only a few DRV'’s are needed in direct integration
of the equation of motion.

Furthermore special algorithms were devised for the integration
of the tridiagonal equations of motion, that aggravate
computational effort by =~ 40% only with respect to the
integration of uncoupled equations.
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Static effects being fully taken into account by the response of
the first DRV, only a few DRV'’s are needed in direct integration
of the equation of motion. o
Furthermore special algorithms were devised for the integration e
of the tridiagonal equations of motion, that aggravate e Trtgor et
computational effort by &~ 40% only with respect to the S
integration of uncoupled equations. Lo
Direct integration in Ritz coordinate is the best choice when the

loading shape is complex and the loading duration is relatively

short.
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Static effects being fully taken into account by the response of
the first DRV, only a few DRV'’s are needed in direct integration
of the equation of motion. e
Furthermore special algorithms were devised for the integration EeeRDE

of the tridiagonal equations of motion, that aggravate ool Mot
computational effort by &~ 40% only with respect to the S
integration of uncoupled equations. Crer e e
Direct integration in Ritz coordinate is the best choice when the

loading shape is complex and the loading duration is relatively

short.

On the other hand, in applications of earthquake engineering the

loading shape is well behaved and the duration is significantly

longer, so that the savings in integrating the uncoupled equations

of motion outbalance the cost of the eigenvalue extraction.

Exampl



Re-Orthogonalization

Denoting with ®; the j columns matrix that collects
theDRV'’s computed, we define an orthogonality test vector

T
Wi:¢/+1M¢/:{W1 Wy ... W1 W,‘}

that expresses the orthogonality of the newly computed
vector with respect to the previous ones.

When one of the components of w; exceeds a given
tolerance, the non-exactly orthogonal ¢, ,; must be
subjected to a Gram-Schmidt orthogonalization with
respect to all the preceding DRV'’s.
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Required Number of DRV

Analogously to the modal participation factor the Ritz
participation factor I'; is defined

~ q)/Tr
M=

¢ Mo,
1

T

(note that we divided by a unit mass).
The loading shape can be expressed as a linear combination
of Ritz vector inertial forces,

r=> fiMg;.

The number of computed DRV'’s can be assumed sufficient
when I'; falls below an assigned value.
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Another way to proceed: define an error vector

i
g =r—)Y Mg,
Jj=1

and an error norm

&l r’e;

&l = —,
! r'r

and stop at ¢, when the error norm falls below a given
value.

Multiple Support
Excitation



Required Number of DRV

Another way to proceed: define an error vector

=1
and an error norm -

|&] :ﬁ’

and stop at ¢; when the error norm falls below a given

value.

BTW, an error norm can be defined for modal analysis too.

Assuming normalized eigenvectors,

j
e;=r—)Y Mg, leil =

Jj=1

rTe,'
r’r
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Error Norms, modes

In this example, we compare the error norms using modal forces
and DRV forces to approximate 3 different loading shapes.
The building model, on the left, used in this example is the

m o
. Same that we already used in different examples.
Xi 1 0 0 0 O
k| ) 01 0 0 O
m The structural matrices are Mm=m|o 0o 1 o0 of,
| m—— 0 0 0 1 0
K | xa 0 0 0 0 1
2 -1 0 0 0 11 01 1 1
m -1 2 -1 0 o0 12 2 2 2
e K=k|0 -1 2 -1 0 =1f1 2 3 3 3.
k|3 o o0 -1 2 -1 1 2 3 4 4
o 0o o -1 1 1 2 3 4 5
m Eigenvalues and eigenvectors matrices are:
e
k| X2 0.0810  0.0000 0.0000 0.0000  0.0000
0.0000 0.6903 0.0000 0.0000  0.0000
m A= {00000 00000 17154 0.0000 0.0000
e
0.0000 0.0000 0.0000 2.8308  0.0000
k|xq 0.0000 0.0000 0.0000 0.0000 3.6825
s . 4+0.1699  —0.4557 +0.5069 +0.5485  —0.3260
4+0.3260 —0.5969 +0.1609 —0.4557  +0.5485
W= 404557 —0.3260 —05485 —0.1699 —0.5969
405485 +0.1699 —0.3260 +0.5969  +0.4557
+0.5969  +0.5485  +0.4557 —0.3260 —0.1699



Error Norms, DRVs

The DRV'’s are computed for three different shapes of force vectors,

For the three force shapes, we have of course different sets of DRV'’s

0(1):

)=

3=

[+0.1348
+0.2697
+0.4045
+0.5394

|-+0.6742

[—0.1601
—0.3203
—0.4804
—0.6405

| —0.4804

[+0.1930
+0.3474
+0.4633
+0.5405

|+0.5791

=11

+0.3023
+0.4966
+0.4750
+0.1296
—0.6478

—0.0843
—0.0773
+0.1125
+0.5764
—0.8013

—0.6195
—0.5552
—0.1805
+0.2248
+0.4742

0 0
0o -2
1 1

+0.4529
+0.4529
—0.1132
—0.6794
+0.3397

+0.2442
+0.5199
+0.5627
—0.4841
—0.3451

+0.6779
—0.2489
—0.5363
—0.0821
+0.4291

+1}7

17

+13 7.

+0.5679
+0.0406
—0.6693
+0.4665
—0.1014

+0.6442
+0.4317
—0.6077
+0.1461
—0.0897

—0.3385
+0.6604
—0.3609
—0.4103
+0.3882

+0.6023]
—0.6884

+0.3872],

—0.1147
+0.0143]

+0.7019]
—0.6594

+0.2659 ],

—0.0425
—0.0035)

+0.0694]
—-0.2701
+0.5787
—0.6945

+0.3241)
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Error Norm, comparison

g B~ WN =

Error Norm
Forces r(y Forces r(y) Forces r(s)
modes DRV modes DRV modes DRV
0.643728 0.545454 0.949965 0.871794 0.120470 0.098360
0.342844 0.125874 0.941250 0.108156 0.033292 0.012244
0.135151 0.010489 0.695818 0.030495 0.009076 0.000757
0.028863 0.000205 0.233867 0.001329 0.001567 0.000011
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000




Reduced Eigenproblem using DRV base

Using the same structure as in the previous example, we want to
compute the first 3 eigenpairs using the first 3 DRV’s computed for
r = r(3) as a reduced Ritz base, with the understanding that r(3) is a
reasonable approximation to inertial forces in mode number 1.

The DRV's used were printed in a previous slide, the reduced mass
matrix is the unit matrix (by orthonormalization of the DRV's), the
reduced stiffness is

+0.0820 —0.0253 +0.0093
K=¢o"K® = [-0.0253 +0.7548 —0.2757
+0.0093 —0.2757 +1.8688

The eigenproblem, in Ritz coordinates is

" 2
Kz=w"z.

A comparison between exact solution and Ritz approximation is in the

next slide.
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results.

The eigenvalues matrices are

0.0810 0 0
A= 0 0.6903 0 and
0 0 1.7154

The eigenvectors matrices are

+0.1699  —0.4557  +0.5969
+0.3260  —0.5969  +0.1699

W=|+0.4557 —0.3260 —0.5485 and
+0.5485  +0.1699  —0.3260
+0.5969  +0.5485  40.4557

~ [o.0810
A= o
0

+0.1699
|+0.3260
W= |+0.4557
+0.5485
+0.5969

In the following, hatted matrices refer to approximate

0
0.6911

0
0

0 1.0334]

—0.4553
—0.6098
—0.3150
+0.1800
+0.5378

+0.8028
—0.1130

—0.4774|.

—0.1269
+0.3143

Example

Numerical
Integration

Multiple Support
Excitation



Introduction to Numerical Integration

When we reviewed the numerical integration methods, we
said that some methods are unconditionally stable and
others are conditionally stable, that is the response
blows-out if the time step h is great with respect to the
natural period of vibration, h > % where a is a constant
that depends on the numerical algorithm.

For MDOF systems, the relevant T is the one associated
with the highest mode present in the structural model, so
for moderately complex structures it becomes impossible to
use a conditionally stable algorithm.

In the following, two unconditionally stable algorithms will
be analyzed, i.e., the constant acceleration method, that
we already know, and the new Wilson's 6 method.
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Constant Acceleration, preliminaries e
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» The initial conditions are known:

X0, Xo, Pg, — )'io:Mfl(pO—C)'(o—Kxo).

Constant Acceleration

Vilson's Theta Metha

» With a fixed time step h, compute the constant
matrices

4 2 4
A=2C+-M, B =2M Kt =2C+—-M.

h ' h h?



Constant Acceleration, stepping

» Starting with / = 0, compute the effective force
increment,

Ap; = pi11 — p; + Ax; + Bx;,
the tangent stiffness K; and the current incremental
stiffness,

K=K, + K.
» For linear systems, it is
~—1
Ax; =K, Ap;,
for a non linear system AXx; is produced by the
modified Newton-Raphson iteration procedure.
» The state vectors at the end of the step are
AX,‘

po X

Xiy1 = X; + Ax;, Xjiy1 =2
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» Increment the step index, i =/ + 1.

» Compute the accelerations using the equation of
equilibrium,

X =M™ (p; — Cx; — Kx;).

» Repeat the sub-steps detailed in the previous slide.



Modified Newton-Raphson i

Numerical
InFegration
> Initialization M e
Yo = Xi fso = fs(system state) GiacomojBofy
AR; = Ap, Kr =K;
» Forj=1,2,...
KrAy, = AR, — Ay (test for cONVergence) e s
Ay, = - R ———
y; =Yj-1 + Ay;, Y, =y,-1+ Ay,

fs,; = fs(updated system state)
Afsvj = fs,j — fS,jfl — (KT — K,‘)ij
ARj;1 = AR; — Afs
> Return the value Ax; =y, — x;
A suitable convergence test is
AR Ay;
%yf < tol
Api AX/,J



Wilson's Theta Method

The linear acceleration method is significantly more
accurate than the constant acceleration method, meaning
that it is possible to use a longer time step to compute the
response of a SDOF system within a required accuracy.

On the other hand, the method is not safely applicable to
MDOF systems due to its numerical instability.
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Wilson's Theta Method

The linear acceleration method is significantly more
accurate than the constant acceleration method, meaning
that it is possible to use a longer time step to compute the
response of a SDOF system within a required accuracy.

On the other hand, the method is not safely applicable to
MDOF systems due to its numerical instability.

Professor Ed Wilson demonstrated that simple variations of
the linear acceleration method can be made unconditionally
stable and found the most accurate in this family of
algorithms, collectively known as Wilson’s 8 methods.
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Wilson's idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...

The procedure is really simple,



Wilson's 6 method

Wilson's idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...

The procedure is really simple,

1. solve the incremental equation of equilibrium using the
linear acceleration algorithm, with an extended time
step

h=6h  6>1,

Derived Ritz
Vectors,
Numerical
Integration
Multiple support
excitation

Giacomo Boffi

oduction
nstant Acceleration

Wilson's Theta Method



Wilson's 6 method

Wilson's idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...

The procedure is really simple,

1. solve the incremental equation of equilibrium using the
linear acceleration algorithm, with an extended time
step

h=6h  6>1,

2. compute the extended acceleration increment
Ax at t =t + h,
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Wilson's 6 method

Wilson's idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...

The procedure is really simple,

1. solve the incremental equation of equilibrium using the
linear acceleration algorithm, with an extended time
step

h=6h  6>1,

2. compute the extended acceleration increment
Ax at t =t + h,

3. scale the extended acceleration increment under the
assumption of linear acceleration, Ax = %Ai,
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Wilson's 6 method

Wilson's idea is very simple: the results of the linear
acceleration algorithm are good enough only in a fraction of
the time step. Wilson demonstrated that his idea was
correct, too...

The procedure is really simple,

1. solve the incremental equation of equilibrium using the
linear acceleration algorithm, with an extended time
step

h=6h  6>1,

2. compute the extended acceleration increment
Ax at t =t + h,

3. scale the extended acceleration increment under the
assumption of linear acceleration, Ax = %Ai,

4. compute the velocity and displacements increment
using the reduced value of the increment of
acceleration.
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Wilson's 8 method description

Using the same symbols used for constant acceleration.
First of all, for given initial conditions xg and Xg, initialize
the procedure computing the constants (matrices) used in
the following procedure and the initial acceleration,

%o = M~ 1(py — Cxo — Kxo),
A =6M/h+3C,
B = 3M + hC/2,

K+ =3C/h+ 6M/h?.
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Starting with / = 0,
1. update the tangentAstianess, K; = K(x x;) and the
effective stiffness, K; = K; + KT,
compute Ap; = 0Ap; + Ax; + BXx;,
with Ap; = p(t; + h) — p(t;)




Wilson's 8 method description

Starting with i = 0,
1. update the tangent stiffness, K; = K(x x;) and the
effective stiffness, K, = K, + K™,
compute Af), = 0Ap, + Ax; + Bx;,
with Ap; = p(t + h) — p(t)
2. solve K;Ax = Aﬁ,-, compute

A A Xi 1,
Ak =622 — 62 — 3% — A% = ~Ax
h2 A 0
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Wilson's 8 method description

Starting with i = 0,

1.

update the tangent stiffness, K; = K(x x;) and the
effective stiffness, K, = K, + K™,

compute Af), = 0Ap, + Ax; + Bx;,

with Ap; = p(t + h) — p(t)

solve K;Ax = Aﬁ,-, compute

. Ax o x 1.
A= 62X 6% _ 3%, - Ax = ~Ax
h2 h 0

. compute

1
Dx = (% + 5 AX)h

1 1
Ax = x;h + (55&, + 6Ase)h2

Derived Ritz
Vectors,
Numerical
Integration
Multiple support
excitation

Giacomo Boffi

¢ t Acceleration
Wilson's Theta Method



Wilson's 8 method description

Starting with i = 0,

1.

update the tangent stiffness, K; = K(x x;) and the
effective stiffness, K, = K, + K™,

compute Af), = 0Ap, + Ax; + Bx;,

with Ap; = p(t + h) — p(t)

solve K;Ax = Aﬁ,-, compute

. Ax o x 1.
A= 62X 6% _ 3%, - Ax = ~Ax
h2 h 0

. compute

1
Ax = (X; + EAi)h
. 1. 1.5
Ax:x,h+(§x,+6Ax)h

update state, x;1+1 = X; + AX, X;1+1 = X; + AX,
I =1+ 1, iterate restarting from 1.

Derived Ritz
Vectors,
Numerical
Integration
Multiple support
excitation

Giacomo Boffi

¢ t Acceleration
Wilson's Theta Method



The Theta Method is unconditionally stable for 8 > 1.37
and it achieves the maximum accuracy for 6 = 1.42.



Multiple Support Excitation



Definitions

Consider the case of a structure where the supports are
subjected to assigned displacements histories, u; = uj(t).
To solve this problem, we start with augmenting the
degrees of freedom with the support displacements.

We denote the superstructure DOF with x1, the support
DOF with x4 and we have a global displacement vector x,
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Damping effects will be introduced at the end of our
manipulations.
The equation of motion is

[M Mg]{*7}+[" KQHXT}_{O}

where M and K are the usual structural matrices, while My
and My, are, in the common case of a lumped mass model,
zero matrices.



Static Components

We decompose the vector of displacements into two
contributions, a static contribution and a dynamic
contribution, attributing the given support displacements to
the static contribution.

bof =1 6)

where x is the usual relative displacements vector.
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Determination of static components

Because the x4 are given, we can write two matricial
equations that give us the static superstructure
displacements and the forces we must apply to the
supports,

Kxs + Kgxg =0

Kg xs + Kggxg = Py

From the first equation we have
Xs = —K_lKgxg
and from the second we have

Py = (Kgg — KgTKilKg)Xg
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Determination of static components

Because the x4 are given, we can write two matricial
equations that give us the static superstructure
displacements and the forces we must apply to the
supports,

Kxs + Kgxg =0

Kg xs + Kggxg = Py

From the first equation we have
Xs = —K_lKgxg
and from the second we have
Py = (Kgg — KgTKilKg)Xg

The support forces are zero when the structure is isostatic
or the structure is subjected to a rigid motion.
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We need the first row of the two matrix equation of Giacomo Boff
equilibrium,

g R R R 1 R b
MQT Mgg] | Xg KgT Kool | Xg Py
substituting xT = Xs + x in the first row Defriins

Mx + MXs + MgXg + Kx + Kxs + Kgxg =0 o

by the equation of static equilibrium, Kxs + Kgxg = 0 we
can simplify

M3+M3xs+Mgxkg+Kx = Mi+(Mg—MK 1K )%, +Kx = 0.



Influence matrix

The equation of motion is
Mx + (Mg — MK 1K )%, + Kx = 0.
We define the influence matrix E by
E=-K K,
and write, reintroducing the damping effects,

M + Cx + Kx = —(ME + M,)%g — (CE + Cy)x,
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Simplification of the EOM

For a lumped mass model, My = 0 and also the efficace
forces due to damping are really small with respect to the
inertial ones, and with this understanding we write

MX + Cx + Kx = —MEX,.
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Significance of E

E can be understood as a collection of vectors e;,
i=1,...,Ng (Ng being the number of DOF associated
with the support motion),

E:[el e .- e,\,g]

where the individual e; collects the displacements in all the
DOF of the superstructure due to imposing a unit
displacement to the support DOF number /.
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Significance of E

This understanding means that the influence matrix can be
computed column by column,

» in the general case by releasing one support DOF,
applying a unit force to the released DOF, computing
all the displacements and scaling the displacements so
that the support displacement component is made
equal to 1,

» or in the case of an isostatic component by examining

the instantaneous motion of the 1 DOF rigid system
that we obtain by releasing one constraint.
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I vg = VB(f

We want to determine the influence matrix E for the
structure in the figure above, subjected to an assigned motion in B.

/| A 1X2 lX::, le ‘L:MH‘H ‘ otion
EOM Example
Response Analys

First step, put in evidence another degree of freedom x3 Response A
corresponding to the assigned vertical motion of the

support in B and compute, using e.g. the PVD, the

flexibility matrix:

3 [54.0000 8.0000 28.0000
F= 6E) 8.0000 2.0000 5.0000
28.0000 5.0000 16.0000
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The stiffness matrix is found by inversion, excitation
Giacomo Boffi
3EJ +7.0000 +12.0000 —16.0000
K= 1313 +12.0000 +80.0000 —46.0000

—16.0000 —46.0000 -+44.0000

We are interested in the partitions Ky and Kyg:
K. — 3EJ | +7.0000 -+12.0000.0000 ~ 3EJ |-16 ;‘Mgmmp.; h
X7 1313 [4+12.0000 +80.0000.0000| " Y9 T 13[3 | —46| s

The influence matrix is

1 [28.
E— K. Ky — [28 oooo} |

16 | 5.0000

please compare E with the last column of the flexibility
matrix, F.



Response analysis
Consider the vector of support accelerations,
)"(_q:{}'(g,, /:1,...,Ng}

and the effective load vector
Ng

Perr = —MESg = — > Mey%g(1).
=1

We can write the modal equation of motion for mode
number n

Ng
E]n + 2<nwnqn + w,%qn = - Z rnlj%g/(t)
I=1
where
’ll’ Me,

Ch = M*
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The solution g,(t) is hence, with the notation of last lesson,

Ng
an(t) =Y TnDp(t),
=1

D, being the response function for ¢, and w, due to the
ground excitation Xg.



Response analysis, continued P ecton,
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The total displacements x+ are given by two contributions,
XT = Xs + X, the expression of the contributions are

Giacomo Boffi

Ng
xs = Exg(t) = > exg(t),
=1

N Ng Equation of motion
X =", Du(t),
n=1 /=1 Response A ample

and finally we have

N Ng

Ng
XT = Ze,xg/(t) + Z Z'Il}nrn/Dn/(t).
=1

n=1 /=1
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For a computer program, the easiest way to compute the
nodal forces is

a) compute, element by element, the nodal displacements
by x7 and xg, o

EOM Examp

b) use the element stiffness matrix compute nodal forces, Response Ansivis

Response A mple

c) assemble element nodal loads into global nodal loads.

That said, let's see the analytical development...
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fo =) > TuKep,Dplt)
n=1 /=1
N Ng
fo=> ) (TuM$)(wiDu(t) =D > rmAn(t)
n=1 /=1
the forces on support Feore Anas

or, using xs = Exq4

NNy

ZK E/-i-Kgg/Xg/-i-ZZran P,Dn(t)

n=1 /=1



The structure response components must be computed
considering the structure loaded by all the nodal forces,

f
f=1{.°".
{fgs}
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The dynamic DOF are x; and x», vertical displacements of S

the two equal masses, x3, xa, X5 are the imposed vertical e s e
displacements of the supports, xg, ..., x10 are the rotational

degrees of freedom (removed by static condensation).



The stiffness matrix for the 10x10 model is

-12 —-12 0 0 0 6L 6L 0 0 O
—-12 24 -12 0 0 —-6L 0 6L 0 O
0 —12 24 —-12 0 0 —-6L 0 6L O
0 0 —-12 24 —-12 0 0 —6L 0 6L

EJ] o o o0 -1212 0 0 0 —-6L-6L

Kiox10 = 3| 6L 6L 0 0 0 4222 0 0 0

6L 0 —6L 0O 0 228222 0 0

0 6L 0 —6L 0 0 2.2 8L%2 22 0
0 0 6L 0 —6L 0 0 2L2 8[2 2/2

L 0 0 0 6L —6L 0O O 0 212 4.2




The first product of the static condensation procedure is
the linear mapping between translational and rotational
degrees of freedom, given by

71 —90 24 -6 1
- 1 [26 12 —48 12 —2 | |
p=—1|-742 0 —-42 7 |X

2 —12 48 —12 -26

-1 6 —24 90 -71



Example

Following static condensation and reordering rows and
columns, the partitioned stiffness matrices are

K= EJ [276 108
28L3 108 276 1"

EJ ¢ _100 —264 —18
Kg = QST[ —18 —264 —102]'

Ky = EJ [45 72 3].

—— | 72 384 72
281313 72 45

The influence matrix is

- 1 -
E=K 1K9:33[1%§§ 15%]
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Example
The eigenvector matrix is
w=[71]
the matrix of modal masses is
M* =W MW = m[39

the matrix of the non normalized modal participation
coefficients is

and, finally, the matrix of modal participation factors,

|

_1
L:WTME:m[ 0
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Denoting with Dj; = D;;(t) the response function for mode
i due to ground excitation Xy, the response can be written

X — ’lliu(—%D11+%D13)+1/112(%D21+3—52 Dz3+%D22)
’llle(—,%D11+%D13)+1/122(%D21+3—52 D23+%D22)

N % D13+ % D11+ % Do1+ % Do3+ % Doo Fisanes Avdise Bae
—3Dn+3D13+55Dn+55D3+ D |-
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