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Problem statement

P +

u(x, t)

vt

L
x

A uniform beam (m(x) = m, EJ(x) = EJ) of lenght L is
loaded by a moving load P , moving with constant velocity,
v(t) = v , in the interval 0 ≤ t ≤ t0 = L/v = t0.

Using the sign conventions indicated above, compute and
plot the midspan displacement u(L/2, t) and the midspan
bending moment Mb(L/2, t) as functions of time in the
interval 0 ≤ t ≤ t0 for different values of the velocity.

NB: the beam is at rest for t = 0.
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Equation of motion

For an uniform beam, the equation of dynamic equilibrium is

m
∂2u(x, t)

∂t2
+ EJ

∂4u(x, t)

∂x4
= p(x, t).

In our example, the loading function must be defined in
terms of δ(x), the Dirac’s delta distribution,

p(x, t) = P δ(x − vt).

The Dirac’s delta is a generalized function of one variable, defined by

δ(x − x0) ≡ 0 and
∫
f (x)δ(x − x0) dx = f (x0).

Note that the Dirac distribution and the Kronecker’s symbol δi j are

two different things.
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Equation of motion

The solution will be computed by separation of variables

u(x, t) = q(t)φ(x)

and modal analysis,

u(x, t) =

∞∑

n=1

qn(t)φn(x)

The relevant quantities for the modal analysis, obtained
solving the eigenvalue problem that arises from the beam
boundary conditions are

φn(x) = sinβnx, βn =
nπ

L
,

mn =
mL

2
, ω2n = β

4
n

EJ

m
= n4π4

EJ

mL4
.
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Orthogonality relationships

For an uniform beam, the orthogonality relationships are

m

∫ L

0

φn(x)φm(x) dx = mnδnm,

EJ

∫ L

0

φn(x)φ
ıv
m(x) dx = knδnm = mnω

2
nδnm.

in the equations above δ is the Kroneker’s δ symbol, a completely

different thing from Dirac’s δ distribution.
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Decoupling the EOM
Using the orthogonality relationships, we can write an infinity of uncoupled
equation of motion for the modal coordinates.

1. The equation of motion is written in terms of the modal series
representation of u(x, t):

m

∞∑

m=1

q̈mφm + EJ

∞∑

m=1

qmφ
ıv
m = P δ(x − vt),

2. every term is multiplied by φn and integrated over the lenght of the
beam

m

∫ L

0
φn

∞∑

m=1

q̈mφm dx + EJ

∫ L

0
φn

∞∑

m=1

qmφ
ıv
m dx =

P

∫ L

0
φnδ(x − vt), n = 1, . . . ,∞

3. we use the ortogonality relationships and the definition of δ,

mnq̈(t) + knq(t) = P φn(vt) = P sin
nπ vt

L
, n = 1, . . . ,∞.
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Solutions

Considering that the initial conditions are nil for all the
modal equations, with ωn = nπv/L and βn = ωn/ωn the
individual solutions are given by

qn(t) =
P

kn

1

1− β2n
(sinωnt − βn sinωnt) , 0 ≤ t ≤ L

v

With kn = mnω2n =
mL

2
n4π4

EJ

mL4
= n4π4

EJ

2L3
, it is

qn(t) =
2PL3

n4π4EJ

1

1− β2n
(sinωnt − βn sinωnt) , 0 ≤ t ≤ L

v
.

It is apparent that for β2n = 1 there is resonance.
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Solutions

The critical velocity vcr,n for mode n is given by βn = 1,
substituting ωn = n2ω1 we have nπvcr,n/L/n2ω1 = 1 that gives
vcr,n = nω1L/π = n vcr,1 = n vcr, where vcr = ω1L/π.

With the position v = κvcr it is

ωn = κnω1 and βn = nκω1/n2ω1 = κ/n.

The solution can be rewritten as

qn(t) =
2PL3

π4EJ

1

n2(n2 − κ2)
(
sin(

κ

n
ωnt)−

κ

n
sinωnt

)
,

for 0 ≤ t ≤ L

v
.
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Adimensional time

Introducing an adimensional time coordinate ξ with t = t0ξ,
noting that ωn = n2ω1 we can write the argument of the
first sine as follows:

κ

n
ωnt = κnω1ξt0 = nξt0κvcrπ/L = nπξ × (vt0)/L = nπξ.

In a similar way we have ωnt = n2πξ/κ.
Substituting in the equation of the modal responses the
new expressions for the sine arguments, it is

qn(ξ) =
2PL3

π4EJ

1

n2(n2 − κ2)

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)

for 0 ≤ ξ ≤ 1.
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Adimensional time IS adimensional position

If we denote with X(t) the position of the load at time t, it
is X(t) = vt = ξL, or ξ = X/L and the expression
u(x, ξ) =

∑
qn(ξ)φn(x) can be interpreted as the

displacement in x when the load is positioned in X = ξL.
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Analytical expressions of u and Mb

The displacement and the bending moment are given by

u(x, ξ) =
2PL3

π4EJ

∞∑

n=1

sin(nπ xL)

n2(n2 − κ2)

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
,

Mb(x, ξ) = −EJ
∂2u(x, ξ)

∂x2
=

=
2PL

π2

∞∑

n=1

sin(nπ xL)

n2 − κ2
(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
.
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Midspan deflection and bending moment

The maximum values of the midspan deflection and
bending moment are obtained when P is placed at midspan,

ustat =
PL3

48EJ
, Mb stat =

PL

4
.

It is convenient to normalize the responses with respect to
these maxima to have an appreciation of the dynamical
effects.
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Midspan deflection and bending moment

The normalized midspan displacement
η(ξ) = u(L/2, ξ)/ustat has the expression

η(ξ) =
96

π4

∞∑

n=1

sin(nπ2 )

n2(n2 − κ2)

(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
,

where sin(nπ/2) = 1, 0,−1, 0, 1, . . . for n = 1, 2, 3, 4, 5, . . .
Analogously, normalizing with respect to the maximum
static bending moment, it is

µ(ξ) =
8

π2

∞∑

n=1

sin(nπ2 )

n2 − κ2
(
sin(nπξ)− κ

n
sin(

n2

κ
πξ)

)
.

Partial sums with N terms will be denoted in the following
by ηN(ξ) and µN(ξ).
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Error estimates

The normalized midspan statical displacement for a load P
placed at X = ξL is ηstat(ξ) = 3ξ − 4ξ3 for 0 ≤ ξ ≤ 1/2 and we
can define a percent error function (using κ = 10−6 to obtain a
good approximation to the static response)

εu,N(ξ) = 100

(
1− ηN(ξ)|κ=10−6

ηstat(ξ)

)
for 0 ≤ ξ ≤ 1/2,
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With 5 terms the approximation is in the order of 1/1000.
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Error estimates

Analogously we can use the midspan bending moment,
normalized with respect to PL/4, µstat(ξ) = 2ξ to define another
percent error function

εM,N = 100

(
1− µN(ξ)|κ=10−6

µstat(ξ)

)
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With 17 terms the approximation is in the order of 4%. As usual,
worse convergence for internal forces.
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The plots

Finally, we plot the normalized displacement and the
normalized bending moment different values of the velocity
(i.e., for different values ofκ).
Note that for the displacement I used N = 11 while for the
bending moment I used N = 25.
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