05_Rayleigh

May 23, 2014

1 Rayleigh estimates

display (SVG(filename=’rigid.svg’))
" " "
m —~ m —~ m —~ m
S T

fe—— [t [t~ [

For a single bar, ' .
Xt — X
x(s) = x + 7’+1L ‘s

and the total kinetic energy is

L
m 1/1 1 1
T=2|] —x3s)ds= = | =>4+ =X X%l m
2/01_ () 2(3/+311+1+3/+/
We compute, bar by bar, the contribution to twice the kinetic energy. The velocities of the first and
last bar have to be written in terms of the fictitious coordinates xp and x; where xp = x4 =0

def index(i):
return %2, (%241, i*x2+42

We use x0, x1, x2, x3, x4, with the understanding that x0=x4=0
we compute twice the kinetic energy storing the coefficients
of the quadratic form in a sequence of length 9 —— note

that the cross terms are restricted to adjacent DOFs

Initially T2 is zero

x0x0, x0x1, xIx1, xIx2, x2x2, x2x3, x3x3, x3x4, x4x4
T2 = | 0, 0, 0, 0, 0, 0, 0, 0, 0]
then for each bar we add, in the correct positions, the contributions to T2

due to the DOFs associated with the current bar
for i in (0,1,2,3):

i11,i12 ,i22=index (i)

T2[i11] 4= frac(1,3)

T2[i12] 4= frac(1,3)

T2[i22] 4= frac(1,3)

we print the coefficients, omitting the ones associated with either xg or x4

print T2[2: —2]

[Fraction(2, 3), Fraction(l, 3), Fraction(2, 3), Fraction(l, 3), Fraction(2, 3)]

With the help of a helper function, we display the quadratic form for 2T and also for 2V, that’s so easy
to determine that | leave its determination to the reader

def Lf(fr):
n = fr.numerator
d = fr.denominator
if n>0:
return v’ + \frac{%d}{%d} *%(n,d) if d>1 else ’%d’%(n,)
elif n<O0:
return r’ - \frac{%d}{%d} *%(-—n,d) if d>1 else ’%d’%(n,)
else :
return > 0 °’

s = (r’$$2 T /m= ’ +
Lf(T2[2])+ x_1"2’ +
LF(T2[3])+ x_1x_2°+
LF(T2[4])+ x_2"2"+
Lf(T2[5])+ ’x_2x_3>
+LF(T2[6])+>x_3"28%")
display (Latex(s))
display (Latex(r’>$$2V/k=\fracl1{12}x_1"2+\fracl1{12}x_1x_2+\frac1{12}x_2"2+x_3"2%%$’))

2 1 2 1 2
2T/m = +§X12 + §X1X2 + §X22 + §X2X3 + §X§

1, 1 1, 5
2V/k = 15 + 157%e + 152 + x5
Using again fraction, we construct the nass matrix and the stiffness matrix equating the double matrix

products to our previous results.

six = frac(1,6)

M= matrix ((
(4% six ,six ,0),
(six ,4xsix ,six),
(0,six ,4%six)
)

twd = frac(1,24)

one = frac (1)

K = matrix ((
(2xtw4 ,tw4, frac()),
(tw4,2*twd, frac()),
(frac(),frac(),one)))

Let's store the stiffness inverse (a bit of work to have integer coefficients).
F = matrix(map(int ,ravel (K. l))).reshape((3,3))

Our initial guess for the shape vector

u = matrix('—10;10;1")
u = matrix(’1;-1;0)
Our initial guess for the Rayleigh estimate,
n, = ravel (u.T*Kxu)
d, = ravel (u.T*Mxu)
print n, d, ’>\t\tRoo =’, n/d,’=’,1.xn/d
1/12 1 Roo = 1/12 = 0.0833333333333

for the second estimate, the previous denominator is the new numerator, and we have to compute a
new denominator

n=4d

d, = ravel (u.T*MxF«Msxu)
print n, d, ’\t\tRoi =’, n/d,’=’,1.xn/d
1 433/36 Roi = 36/433 = 0.0831408775982

and then the final estimate that was requested

n =d

d, = ravel (u.T«M«F+«M*xF*xMxu)

print n, d, ’\t\tRii =’, n/d,’=’,1.%xn/d

433/36 7813/54 Rii = 1299/15626 = 0.0831306796365

To see if ours result is good, we have to cheat. ..

from scipy.linalg import eigh

eval , evec = eigh(K,M, eigvals=(0,0))
print "1st eigenvalue = ", eval[0]
print "l1st eigenvector =", ravel(evec)

1st eigenvalue = 0.0831297397226
1st eigenvector [0.99565905 -0.99930337 -0.01465763]

The results are good, but | sort of cheated in the choice of the trial shape vector, as | already had an
idea of the first eigenvector of the system.

	Rayleigh estimates

