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The Equation of Motion

For an undamped SDOF system subjected to an harmonic
excitation, characterized by the amplitude p0 and frequency
ω, we can write this equation of dynamic equilibrium:

m ẍ + k x = p0 sinωt.

The solution to the above differential equation is the
homogeneous solution plus a particular integral ξ(t),

x(t) = A sinωnt + B cosωnt + ξ(t)

with
mξ̈(t) + kξ(t) = p0 sinωt.

The ratio of the excitation frequency to the system natural
frequency is the frequency ratio β = ω/ωn.
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The Particular Integral

The particular integral, as it happens, can be written in
terms of an undetermined coefficient C multiplying a sine,
with the same frequency ω as the excitation:

ξ(t) = C sinωt,

ξ̇(t) = ωC cosωt,

ξ̈(t) = −ω2 C sinωt.
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The Particular Integral

1. Substituting ξ(t) for x(t) in mẍ(t) + kx(t) = p0 sinωt
we have

C (k − ω2m) sinωt = p0 sinωt

and simplyfing

C (k − ω2m) = p0.

2. Solving for C we get C = p0
k−ω2m ,

3. collecting k in the right member divisor: C = p0
k

1
1−ω2 m

k

4. but k/m = ω2
n hence C = p0

k
1

1−ω2/ω2
n

5. with β = ω/ωn, we get: C = p0
k

1
1−β2 .
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The Particular Integral

We can now write the particular solution, with the
dependencies on β singled out in the second term:

ξ(t) =
p0
k

1
1− β2 sinωt.

The general integral for p(t) = p0 sinωt is hence

x(t) = A sinωnt + B cosωnt +
p0
k

1
1− β2 sinωt.
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Response Ratio and Dynamic Amplification
Factor

∆st = p0/k being the static deformation, defining the
Response Ratio, R(t; β) = 1

1−β2 sinωt, we can write

ξ(t) = ∆st R(t; β).

Introducing the dynamic amplification factor D(β) = 1
1−β2

ξ(t) = ∆stD(β) sinωt.

D(β) is stationary and almost equal to 1 when
ω � ωn (this is a quasi-static behaviour), it
grows out of bound when β ⇒ 1 (resonance), it
is negative for β > 1 and goes to 0 when ω � ωn
(high-frequency loading).
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Dynamic Amplification Factor, the plot
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Response from Rest Conditions

Starting from rest conditions means that x(0) = ẋ(0) = 0.

Let’s start with x(t), then evaluate x(0) and finally equate
this last expression to 0:

x(t) = A sinωnt + B cosωnt + ∆stD(β) sinωt,

x(0) = B = 0.

We do as above for the velocity:

ẋ(t) = ωn (A cosωnt − B sinωnt) + ∆stD(β)ω cosωt,

ẋ(0) = ωn A + ω∆stD(β) = 0⇒

⇒ A = −∆st
ω

ωn
D(β) = −∆st βD(β)

Substituting, A and B in x(t) above, collecting ∆st and
D(β) we have, for p(t) = p0 sinωt, the response from rest:

x(t) = ∆st D(β) (sinωt − β sinωnt) .
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Let’s start with x(t), then evaluate x(0) and finally equate
this last expression to 0:

x(t) = A sinωnt + B cosωnt + ∆stD(β) sinωt,

x(0) = B = 0.

We do as above for the velocity:
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Response from Rest Conditions, cont.

For p(t) = p0 cosωt you can show that ξ(t) = ∆st D(β) cosωt and
the general integral is

x(t) = A sinωnt + B cosωnt + ∆st D(β) cosωt.

For a system starting from rest, with p(t) = p0 cosωt it is

x(0) = B + ∆st D(β) = 0,

ẋ(0) = A = 0,

so that, solving for A and B and substituting in the general integral we
have, collecting ∆st and D(β)

x(t) = ∆st D(β) (cosωt − cosωnt) .
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Beating

What happens when the excitation frequency is close to the
natural frequency?

Let’s start writing

ω = ω̄ −∆ω, ωn = ω̄ + ∆ω,

and substituting in the time dependency of the response to a
cosine excitation,

s(t) = cosωt − cosωnt = cos(ω̄t −∆ωt)− cos(ω̄t + ∆ωt).

Next step is application of the sum and difference formulas,
namely

cos(a ± b) = cos a cos b ∓ sin a sin b

that leads to

s(t) = cos(ω̄t) cos(∆ωt) + sin(ω̄t) sin(∆ωt)

− cos(ω̄t) cos(∆ωt) + sin(ω̄t) sin(∆ωt)

= 2 sin(ω̄t) sin(∆ωt)
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Beating, cont.

From ω = ω̄ −∆ω, ωn = ω̄ + ∆ω we have

ω̄ =
ωn + ω

2
, ∆ω =

ωn − ω
2

and we recognize that ω̄ is just the mean frequency and
that ∆ω � ω,ωn, ω̄ when the excitation and the natural
frequency are close to each other.
Hence our final representation of the time dependency,

s(t) = 2 sin(ω̄t) sin(∆ωt),

can be interpreted as a sine of (relatively) high frequency
modulated by a sine of (relatively) low frequency.
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Beating, cont.

To give an example of the previous derivation, and to help
visualing the beating phenomenon, let’s consider the
following parameters, ω̄ = 2π, ∆ω = 0.05ω̄ or,
equivalently, Tn ≈ 1 s and T∆ = 20 s.
A graphical representation of the time dependency of the
response is

−1
−0.5

0

0.5

1

0 5 10 15 20 25

s(
t)
/2

Time/s

In red, the enveloping function sin(∆ωt).
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Resonant Response from Rest Conditions

The dynamic amplification factor, D(β), is infinite
for β = 1, but (of course) this doesn’t imply that
exciting a system with a harmonic force with
frequency equal to its natural frequency suddenly
produces an infinite response...
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Resonant Response from Rest Conditions

We have seen that the response to a resonant sine loading with
zero initial conditions is (expliciting the dependency on β)

x(t;β) = ∆st
(sinβωnt − β sinωnt)

1− β2

∣∣∣∣
β=1

and while the denominator is equal to zero also the numerator is
equal to zero... so we have an indeterminate form.

To determine the resonant response, we have to compute the
limit

x(t) = lim
β→1

∆st
(sinβωnt − β sinωnt)

1− β2

using, e.g., the de l’Hôpital rule.
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Resonant Response from Rest Conditions

x(t) = lim
β→1

∆st
(sinβωnt − β sinωnt)

1− β2

= ∆st
∂(sinβωnt − β sinωnt)/∂β

∂(1− β2)/∂β

∣∣∣∣
β=1

= ∆st
ωnt cosβωnt − sinωnt

−2β

∣∣∣∣
β=1

=
∆st

2
(sinωt − ωt cosωt)

As you can see, there is a term in quadrature with the loading
whose amplitude grows linearly and without bounds.
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Resonant Response, the plot
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α = ω t / 2π

±sqrt[(2π α)2+1]

2
∆st

x(t) = sinωt − ωt cosωt = sin 2πα− 2πα cos 2πα.

note that the amplitude A of the normalized envelope, with respect to the

normalized abscissa α = ωt/2π, is A =
√
1 + (2πα)2

for large α−→ 2πα, as the
two components of the response are in quadrature.
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home work

Derive the expression for the resonant response with
p(t) = p0 cosωt, ω = ωn.
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Response of the Damped Oscillator
to Harmonic Loading
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The EoM for a Damped Oscillator

For a SDOF damped system, the equation of motion for a
harmonic loading is:

m ẍ + c ẋ + k x = p0 sinωt.

Its particular solution is a harmonic function not in phase
with the input: ξ(t) = G sin(ωt − θ);

Being sin(a − b) = sin a cos b − cos a sin b, with

G1 = G cos θ, G2 = −G sin θ,

we can write the more convenient representation:

ξ(t) = G1 sinωt + G2 cosωt,

where we have two harmonic components in quadrature.
It’s easy to derive the parameters G , θ in terms of G1,G2:

G =
√
G2
1 + G2

2 , θ = − arctan
G2

G1
.
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The Particular Integral

Substituting x(t) with ξ(t), dividing by m it is

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) =

p0
k

k
m

sinωt,

Substituting the most general expressions for the particular
integral and its time derivatives

ξ(t) = G1 sinωt + G2 cosωt,

ξ̇(t) = ω (G1 cosωt − G2 sinωt),

ξ̈(t) = −ω2 (G1 sinωt + G2 cosωt).

in the above equation it is

−ω2 (G1 sinωt + G2 cosωt) + 2ζωnω (G1 cosωt − G2 sinωt)+

+ω2
n(G1 sinωt + G2 cosωt) = ∆stω

2
n sinωt
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The particular integral, 2

Dividing our last equation by ω2
n and collecting sinωt and

cosωt we obtain

(
G1(1− β2)− G22βζ

)
sinωt+

+
(
G12βζ + G2(1− β2)

)
cosωt = ∆st sinωt.

Evaluating the eq. above for t = π/2ω and t = 0 we obtain a
linear system of two equations in G1 and G2:

G1(1− β2)− G22ζβ = ∆st.

G12ζβ + G2(1− β2) = 0.

The determinant of the linear system is

det = (1− β2)2 + (2ζβ)2

and its solution is

G1 = ∆st
(1− β2)

det
, G2 = ∆st

−2ζβ
det

.
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The Particular Integral, 3
Substituting G1 and G2 in our expression of the particular
integral it is

ξ(t) =
∆st

det

(
(1− β2) sinωt − 2βζ cosωt

)
.

The general integral for p(t) = p0 sinωt is hence

x(t) = exp(−ζωnt) (A sinωDt + B cosωDt) +

+ ∆st
(1− β2) sinωt − 2βζ cosωt

det

For p(t) = psin sinωt + pcos cosωt, ∆sin = psin/k ,
∆cos = pcos/k it is

x(t) = exp(−ζωnt) (A sinωDt + B cosωDt) +

+ ∆sin
(1− β2) sinωt − 2βζ cosωt

det
+

+ ∆cos
(1− β2) cosωt + 2βζ sinωt

det
.
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Stationary Response

Examination of the general integral

x(t) = exp(−ζωnt) (A sinωDt + B cosωDt) +

+ ∆st
(1− β2) sinωt − 2βζ cosωt

det

shows that we have a transient response, that depends on
the initial conditions and damps out for large values of the
argument of the real exponential, and a so called
steady-state response, corresponding to the particular
integral, xs-s(t) ≡ ξ(t), that remains constant in amplitude
and phase as long as the external loading is being applied.

From an engineering point of view, we have a specific
interest in the steady-state response, as it is the long term
component of the response.
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The Angle of Phase

To write the stationary response in terms of a dynamic
amplification factor, it is convenient to reintroduce the
amplitude and the phase difference θ and write:

ξ(t) = ∆st R(t; β, ζ), R = D(β, ζ) sin (ωt − θ) .

Let’s start analyzing the phase difference θ(β, ζ). Its
expression is:

θ(β, ζ) = arctan
2ζβ

1− β2 .

 0

π/2

π

 0  0.5  1  1.5  2

ι

β

θ(β;ζ=0.00)
θ(β;ζ=0.02)
θ(β;ζ=0.05)
θ(β;ζ=0.20)
θ(β;ζ=0.70)
θ(β;ζ=1.00)

θ(β, ζ) has a sharper variation around
β = 1 for decreasing values of ζ, but
it is apparent that, in the case of slightly
damped structures, the response is ap-
proximately in phase for low frequencies
of excitation, and in opposition for high
frequencies. It is worth mentioning that
for β = 1 we have that the response is
in perfect quadrature with the load: this
is very important to detect resonant re-
sponse in dynamic tests of structures.
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The dynamic magnification factor, D = D(β, ζ), is the
amplitude of the stationary response normalized with
respect to ∆st:

D(β, ζ) =

√
(1− β2)2 + (2βζ)2

(1− β2)2 + (2βζ)2
=

1√
(1− β2)2 + (2βζ)2

 0
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D(β,ζ=0.00)
D(β,ζ=0.02)
D(β,ζ=0.05)
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D(β,ζ=0.70)
D(β,ζ=1.00)

I D(β, ζ) has larger peak values for
decreasing values of ζ,

I the approximate value of the peak,
very good for a slightly damped
structure, is 1/2ζ,

I for larger damping, peaks move
toward the origin, until for ζ = 1√

2
the peak is in the origin,

I for dampings ζ > 1√
2
we have no

peaks.
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Dynamic Magnification Ratio (2)

The location of the response peak is given by the equation

d D(β, ζ)

d β
= 0, ⇒ β3 + (2ζ2 − 1)β = 0

the 3 roots are
βi = 0,±

√
1− 2ζ2.

We are interested in a real, positive root, so we are
restricted to 0 < ζ ≤ 1√

2
. In this interval, substituting

β =
√
1− 2ζ2 in the expression of the response ratio, we

have
Dmax =

1
2ζ

1√
1− ζ2

.

For ζ = 1√
2
there is a maximum corresponding to β = 0.

Note that, for a relatively large damping ratio, ζ = 20%, the
error of 1/2ζ with respect to Dmax is in the order of 2%.
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Consider the EOM for a load modulated by an exponential
of imaginary argument:

ẍ + 2ζωnẋ + ω2
nx = ∆stω

2
n exp(i(ωt − φ)).

Note that the phase can be disregarded as we can represent its effects with a

constant factor, as it is exp(i(ωt − φ)) = exp(iωt)/ exp(iφ).

The particular solution and its derivatives are

ξ = G exp(iωt), ξ̇ = iωG exp(iωt), ξ̈ = −ω2G exp(iωt),

where G is a complex constant.
Substituting, dividing by ω2

n, removing the dependency on
exp(iωt) and solving for G yields

G = ∆st

[
1

(1− β2) + i(2ζβ)

]
= ∆st

[
(1− β2)− i(2ζβ)

(1− β2)2 + (2ζβ)2

]
.

Notice how simpler it is to represent the stationary response
of a damped oscillator using exponential harmonics.
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nx = ∆stω

2
n exp(i(ωt − φ)).

Note that the phase can be disregarded as we can represent its effects with a

constant factor, as it is exp(i(ωt − φ)) = exp(iωt)/ exp(iφ).
The particular solution and its derivatives are

ξ = G exp(iωt), ξ̇ = iωG exp(iωt), ξ̈ = −ω2G exp(iωt),

where G is a complex constant.

Substituting, dividing by ω2
n, removing the dependency on

exp(iωt) and solving for G yields

G = ∆st

[
1

(1− β2) + i(2ζβ)

]
= ∆st

[
(1− β2)− i(2ζβ)

(1− β2)2 + (2ζβ)2

]
.

Notice how simpler it is to represent the stationary response
of a damped oscillator using exponential harmonics.



SDOF linear
oscillator

Giacomo Boffi

Damped Response
EOM Damped

Particular Integral

Stationary Response

Phase Angle

Dynamic Magnification

Exponential Load

Accelerometre, etc

Harmonic Exponential Load

Consider the EOM for a load modulated by an exponential
of imaginary argument:
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Measuring Support Accelerations

We have seen that in seismic analysis the loading is
proportional to the ground acceleration.
A simple oscillator, when properly damped, may serve the
scope of measuring support accelerations.
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Measuring Support Accelerations, 2

With the equation of motion valid for a harmonic support
acceleration:

ẍ + 2ζβωnẋ + ω2
nx = −ag sinωt,

the stationary response is ξ =
m ag

k D(β, ζ) sin(ωt − θ).
If the damping ratio of the oscillator is ζ u 0.7, then the

Dynamic Amplification D(β) u 1 for 0.0 < β < 0.6!

Oscillator’s displacements will be proportional to the
accelerations of the support for applied frequencies up to
about six-tenths of the natural frequency of the instrument.
Because you can record the 70% damped oscillator
displacements mechanically or electronically, you can
accurately measure one component of the ground
acceleration, up to a frequency of the order of 0.6ωn.
Books have been written on the correction of accelerometers’ records
to most accurately recover the real ground acceleration.
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Measuring Displacements

Consider now a harmonic displacement of the support, ug(t) = ug sinωt.
The support acceleration (disregarding the sign) is ag(t) = ω2ug sinωt.

With the equation of motion: ẍ + 2ζβωnẋ + ω2
nx = −ω2ug sinωt, the

stationary response is ξ = ug β2 D(β, ζ) sin(ωt − θ).

Let’s see a graph of the dynamic amplification factor derived above.

We see that the displacement of the in-
strument is approximately equal to the
support displacement for all the excita-
tion frequencies greater than the nat-
ural frequency of the instrument, for a
damping ratio ζ u .5.

It is possible to measure the support displacement measuring the deflection
of the oscillator, within an almost constant scale factor, for excitation
frequencies larger than ωn.
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It is possible to measure the support displacement measuring the deflection
of the oscillator, within an almost constant scale factor, for excitation
frequencies larger than ωn.
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Vibration Isolation

Vibration isolation is a subject too broad to be treated in
detail, we’ll present the basic principles involved in two
problems,

1. prevention of harmful vibrations in supporting
structures due to oscillatory forces produced by
operating equipment,

2. prevention of harmful vibrations in sensitive
instruments due to vibrations of their supporting
structures.
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Force Isolation

Consider a rotating machine that produces an oscillatory
force p0 sinωt due to unbalance in its rotating part, that
has a total mass m and is mounted on a spring-damper
support.
Its steady-state relative displacement is given by

xs-s =
p0
k
D sin(ωt − θ).

This result depend on the assumption that the supporting structure

deflections are negligible respect to the relative system motion.

The steady-state spring and damper forces are

fS = k xss = p0D sin(ωt − θ),

fD = c ẋss =
cp0D ω

k
cos(ωt − θ) = 2 ζ β p0D cos(ωt − θ).
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Transmitted force

The spring and damper forces are in quadrature, so the
amplitude of the steady-state reaction force is given by

fmax = p0D
√
1 + (2ζβ)2

The ratio of the maximum
transmitted force to the am-
plitude of the applied force
is the transmissibility ratio
(TR),

TR =
fmax

p0
= D

√
1 + (2ζβ)2.
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1. For β <
√
2, TR is always greater than 1: the transmitted force is

amplified. 2. For β >
√
2, TR is always smaller than 1 and for the same β

TR decreases with ζ.
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Displacement Isolation

Another problem concerns the harmonic support motion
ug(t) = ug0 exp iωt forcing a steady-state relative displacement of
some supported (spring+damper) equipment of mass m (using exp
notation) xss = ug0 β

2D exp iωt, and the mass total displacement is
given by

xtot = xs-s + ug(t) = ug0

(
β2

(1− β2) + 2 i ζβ
+ 1
)

exp iωt

= ug0 (1 + 2iζβ)
1

(1− β2) + 2 i ζβ
exp iωt

but 1 + 2iζβ = abs(1 + 2iζβ) exp iϕ so

xtot = ug0

√
1 + (2ζβ)2 D exp i (ωt + ϕ).

If we define the transmissibility ratio TR as the ratio of the maximum
total response to the support displacement amplitude, we find that, as
in the previous case,

TR = D
√
1 + (2ζβ)2.
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Isolation Effectiveness

Define the isolation effectiveness,

IE = 1− TR,

IE=1 means complete isolation, i.e., β =∞, while IE=0 is no isolation,
and takes place for β =

√
2.

As effective isolation requires low damping, we can approximate
TR u 1/(β2 − 1), in which case we have IE = (β2 − 2)/(β2 − 1).
Solving for β2, we have β2 = (2− IE)/(1− IE), but

β2 = ω2/ω2
n = ω2 (m/k) = ω2 (W /gk) = ω2 (∆st/g)

where W is the weight of the mass and ∆st is the static deflection
under self weight. Finally, from ω = 2π f we have

f =
1
2π

√
g

∆st

2− IE
1− IE
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Isolation Effectiveness (2)

The strange looking

f =
1
2π

√
g

∆st

2− IE
1− IE

can be plotted f vs ∆st for differ-
ent values of IE, obtaining a design
chart.  0
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Knowing the frequency of excitation and the required level of vibration
isolation efficiency (IE), one can determine the minimum static
deflection (proportional to the spring flexibility) required to achieve the
required IE. It is apparent that any isolation system must be very
flexible to be effective.
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Evaluation of damping

The mass and stiffness of phisycal systems of interest are usually
evaluated easily, but this is not feasible for damping, as the energy is
dissipated by different mechanisms, some one not fully understood... it
is even possible that dissipation cannot be described in term of
viscous-damping, But it generally is possible to measure an equivalent
viscous-damping ratio by experimental methods:

I free-vibration decay method,

I resonant amplification method,

I half-power (bandwidth) method,

I resonance cyclic energy loss method.



SDOF linear
oscillator

Giacomo Boffi

Evaluation of
damping
Introduction

Free vibration decay

Resonant amplification

Half Power

Resonance Energy Loss

Evaluation of damping

The mass and stiffness of phisycal systems of interest are usually
evaluated easily, but this is not feasible for damping, as the energy is
dissipated by different mechanisms, some one not fully understood... it
is even possible that dissipation cannot be described in term of
viscous-damping, But it generally is possible to measure an equivalent
viscous-damping ratio by experimental methods:

I free-vibration decay method,

I resonant amplification method,

I half-power (bandwidth) method,

I resonance cyclic energy loss method.
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Free vibration decay

We already have discussed the free-vibration decay method,

ζ =
δm

2πm (ωn/ωD)

with δm = ln xn
xn+m

, logarithmic decrement. The method is simple and
its requirements are minimal, but some care must be taken in the
interpretation of free-vibration tests, because the damping ratio
decreases with decreasing amplitudes of the response, meaning that
for a very small amplitude of the motion the effective values of the
damping can be underestimated.
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Resonant amplification

This method assumes that it is possible to measure the stiffness of the
structure, and that damping is small. The experimenter (a) measures
the steady-state response xss of a SDOF system under a harmonic
loading for a number of different excitation frequencies (eventually
using a smaller frequency step when close to the resonance), (b) finds
the maximum value Dmax = max{xss}

∆st
of the dynamic magnification

factor, (c) uses the approximate expression (good for small ζ)
Dmax = 1

2ζ to write

Dmax = 1
2ζ = max{xss}

∆st

and finally (d) has

ζ = ∆st
2max{xss} .

The most problematic aspect here is getting a good estimate of ∆st, if
the results of a static test aren’t available.
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Half Power

The adimensional frequencies where the response is 1/
√
2 times the

peak value can be computed from the equation

1√
(1− β2)2 + (2βζ)2

=
1√
2

1

2ζ
√
1− ζ2

squaring both sides and solving for β2 gives

β21,2 = 1− 2ζ2 ∓ 2ζ
√
1− ζ2

For small ζ we can use the binomial approximation and write

β1,2 =
(
1− 2ζ2 ∓ 2ζ

√
1− ζ2

) 1
2 u 1− ζ2 ∓ ζ

√
1− ζ2
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Half power (2)

From the approximate expressions for the difference of the half power
frequency ratios,

β2 − β1 = 2ζ
√
1− ζ2 u 2ζ

and their sum
β2 + β1 = 2(1− ζ2) u 2

we can deduce that

β2 − β1
β2 + β1

=
f2 − f1
f2 + f1

u 2ζ
√
1− ζ2

2(1− ζ2)
u ζ, or ζ u f2 − f1

f2 + f1

where f1, f2 are the frequencies at which the steady state amplitudes
equal 1/

√
2 times the peak value, frequencies that can be determined

from a dynamic test where detailed test data is available.
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Resonance Cyclic Energy Loss

If it is possible to determine the phase of the s-s response, it is possible
to measure ζ from the amplitude ρ of the resonant response.
At resonance, the deflections and accelerations are in quadrature with
the excitation, so that the external force is equilibrated only by the
viscous force, as both elastic and inertial forces are also in quadrature
with the excitation.
The equation of dynamic equilibrium is hence:

p0 = c ẋ = 2ζωnm (ωnρ).

Solving for ζ we obtain:
ζ =

p0
2mω2

nρ
.
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