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A periodic loading is characterized by the identity

p(t) =p(t+T)

where T is the period of the loading, and w; = 27" is its

principal frequency.
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A periodic loading is characterized by the identity

p(t) =p(t+T)

where T is the period of the loading, and w; = 277' is its

principal frequency.
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Note that a function with period 7/a is also periodic with period T.



Introduction

Periodic loadings can be expressed as an infinite series of
harmonic functions using the Fourier theorem, e.g., for an
antisymmetric loading you can write

p(t) = —p(—t) = 3272, pjsinjwit = > 22, psinw;t.

The steady-state response of a SDOF system for a
harmonic loading Apj(t) = pjsinw;t is known; with
B = wj/wy it is:

Xjs-s = %D(Bj: C) Sin(wjt - 9(5]! C))
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Introduction

Periodic loadings can be expressed as an infinite series of
harmonic functions using the Fourier theorem, e.g., for an
antisymmetric loading you can write

p(t) = —p(—t) = 3272, pjsinjwit = > 22, psinw;t.

The steady-state response of a SDOF system for a
harmonic loading Apj(t) = pjsinw;t is known; with
B = wj/wy it is:

Xjs-s = %D(Bj: C) Sin(wjt - 9(5]! C))

In general, it is possible to sum all steady-state responses,
the infinite series giving the SDOF response to p(t).

SDOF linear
oscillator

Giacomo Boffi

Introduction

Fol
presentatios
Fol
Regaie.
npl
npl



SDOF linear

I nt rOd UCtlon oscillator

Giacomo Boffi
Periodic loadings can be expressed as an infinite series of
harmonic functions using the Fourier theorem, e.g., for an
antisymmetric loading you can write S

p(t) = —p(—t) = 3272, pjsinjwit = > 22, psinw;t. A

The steady-state response of a SDOF system for a
harmonic loading Apj(t) = pjsinw;t is known; with
B = wj/wy it is:

Xjs-s = %D(Bj: C) Sin(wjt - 9(5]! C))

In general, it is possible to sum all steady-state responses,
the infinite series giving the SDOF response to p(t).

Due to the asymptotic behaviour of D(G; () (D goes to
zero for large, increasing (3) it is apparent that a good
approximation to the steady-state response can be obtained
using a limited number of low-frequency terms.



Using Fourier theorem any practical periodic loading can be
expressed as a series of harmonic loading terms.



Using Fourier theorem any practical periodic loading can be
expressed as a series of harmonic loading terms.
Consider a loading of period Tp, its Fourier series is given by

o0 o0
2T
t)=a a;cosw;t bisinw;t, w =jw; = —,
p(t) 0+J§_1: lj /j +J§_1: )j j j = J W1 '/Tp

Loadings



Fourier Series Coefficients
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Using Fourier theorem any practical periodic loading can be
expressed as a series of harmonic loading terms.

Consider a loading of period Tp, its Fourier series is given by

Fourier Series
Representation

00 0 rz“;r:jw :
. : 27 Glean
p(t):ao—i-;ajcoswjt—i-;bjsmwjt, wWj = jwi :J?p, An examp!

where the harmonic amplitude coefficients have
expressions:

1 [T 2 [T
aoz—/ p(t) dt, a-:—/ p(t) cosw;t dt,
Tp 0 ( ) J Tp 0 ( ) J

2 [P
by = —/ p(t) sinw;t dt,
To Jo

as, by orthogonality,

[ p(t)cosw; dt = [° ajcos?w;t dt = L2aj, etc etc.



Sampled Periodic Functions

If p(t) has not an analytical representation and must be measured
experimentally or computed numerically, we may assume that it is
possible

(a) to divide the period in N equal parts At = T,/N,

(b) measure or compute p(t) at a discrete set of instants

t1, to, ..., tn, With t,, = mATL,

obtaining a discrete set of values p,, m=1,..., N (note that
po = pn by periodicity).
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Sampled Periodic Functions

If p(t) has not an analytical representation and must be measured
experimentally or computed numerically, we may assume that it is
possible

(a) to divide the period in N equal parts At = T,/N,

(b) measure or compute p(t) at a discrete set of instants

t1, to, ..., tn, With t,, = mATL,

obtaining a discrete set of values p,, m=1,..., N (note that
po = pn by periodicity).

Using the trapezoidal rule of integration, with po = py we can write,

for example, the cosine-wave amplitude coefficients,

2At

aj = coswjtm

m=1

2 & 2 & mom
=N Z cos(jwimAt) = N Z cosJ
m=1 m=1
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If p(t) has not an analytical representation and must be measured
experimentally or computed numerically, we may assume that it is
possible Introduction

Fourier Series
(a) to divide the period in N equal parts At = T,/N,

Representation

(b) measure or compute p(t) at a discrete set of instants
t1, to, ..., tn, With t,, = mATL,

obtaining a discrete set of values p,,, m=1,..., N (note that

po = pn by periodicity).

Using the trapezoidal rule of integration, with po = py we can write,
for example, the cosine-wave amplitude coefficients,

2At

aj = coswjtm

m=1

2 & 2 & mom
=N Z cos(jwimAt) = N Z cosJ
m=1 m=1

jm 2m

[t's worth to note that the discrete function cos is periodic with

period N.



(n+N)2m
cos I N)2m n2mw
N = cos <T+27r> =cos%




(n+ N)2m n2m n2m
_— = _— 2 = _—
cos N cos N + 27 cos N

2 |+ N)m?2m
ajpn = sz’" COS%

2 (Um+ Nm)2m
=y 2 pm sy

2 im?2
= Nme Cos <JmT7r+m27r>



(n+ N)2m n2m n2m
_— = _— 2 = _—
cos N cos N + 27 cos N

2 |+ N)m?2m
ajpn = sz’" COS%

2 (Um+ Nm)2m
=y 2 pm sy

2 im?2
= Nme Cos <JmT7r+m27r>

2 jm?2m
aAjtN = szm Cos N = aj.




The Fourier series can be written in terms of the
exponentials of imaginary argument,

oo
p(t) = Z P; exp iw;t

Jj=—o0
where the complex amplitude coefficients are given by
1 [

p=
! TD 0

p(t) expiw;t dt, Jj=—o00,...,+00.
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The Fourier series can be written in terms of the
exponentials of imaginary argument,

o0
t) = Z P; exp iw;t

J=—o00

where the complex amplitude coefficients are given by
Tp
P = / p(t)expiw;t dt, J=-00,..., ~+00.
To Jo

For a sampled p,, we can write, using the trapezoidal
integration rule and substituting t,, = mAt=mT,/N,
wj=j2m/Tp:

N .
A Z exp(— 27” m)
=~ N

m:



We have seen that the steady-state response to the jth
sine-wave harmonic can be written as

nl 1]
X = ?J [1——512] sinw;t, Bj = wj/wn,

analogously, for the jth cosine-wave harmonic,

_ 9

1
Xj = P [l——ﬁf] COS(U_/'t.
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We have seen that the steady-state response to the jth
sine-wave harmonic can be written as

I
-
Rer o
b . 1 Fourier Series of the
e B 1 . . — . Respcnse
Xj = p —5 | Sinwjt, B = wj/wh, e
1-5;

analogously, for the jth cosine-wave harmonic,

aj 1
XJ-:—J 5 | Cosw;t.
kK |1-6;

Finally, we write

x(t) = ao+z [ —52] (aj coswjt + bjsinw;t)
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In the case of a damped oscillator, we must substitute the
steady state response for both the jth sine- and
cosine-wave harmonic,

30 1N H1L-B) 3 — 206 by =
X0 =5 @ gy ey Ut

sinw;t.

1 +2(B; a; + 1—B2)
@ (1-62)% + (2¢B))?



Damped Response

In the case of a damped oscillator, we must substitute the
steady state response for both the jth sine- and
cosine-wave harmonic,

Ho%, 1SN +(1—67) aj — 2(B; by
0= @ (1—B2)2 + (206))?
1 +2(B;a; + (1 = B7) b,

@ (1 -2+ (2B))

cosw;t+

sinw;t.

As usual, the exponential notation is neater,

exp iw;t
Z 3 1—[32 )+1i(2¢B))
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As an example, consider the loading
p(t) = max{po sin 2%: 0}

- Po ma* (sin(2wt/ T5),0.0) ‘—
po b o EUN T — S

0.5p()




As an example, consider the loading
p(t) = max{po sin 2%* 0}

a —L/Tp/2 sinﬁ dt—@
O_Tp : pO T - 1

b T
aj = i 2 Po SIN ﬁ cos @ dt
To Jo Tp Tp

0 for j odd
- {% [1_2]2} for j even,

2 [Te/2 omt | 2mjt B
b-=—/ Do Sin — sin —— dt =< 2
! 0 ¢ Tp To 0

forj=1
for n > 1.



Assuming 31 = 3/4, from
p="2(1+Zsinwit—3cos2w;it — 75 cosdwot — ... ) with the
dynamic amplifiction factors

1 16
Di=—— =,
S E R
1 4
D= — > -
T1-(2p s
1 1
Di=——s—=—= Ds=..
I VEICh R

etc, we have

8w 8 1
x(t) = ll:o (1+ - S|nw1t+Ecos2w1t+@cos4w1t+...)
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Assuming B; = 3/4, from
p="2(1+Zsinwit—3cos2wit — 7z cosdwot —...) with the
dynamlc amplifiction factors

1 16
D = e = =, An example
1 1— (1%)2 7 An example
1
D = = ——
2T 1-(3) 5
1 1
Dy = =—=, De=...
tTr—@p s P

etc, we have

Po 8 8 1
x(t 14+ —sinwyt+ — cos2w; t cosdwit+ ...
(t) = k7r(+7 1+15 1+6O 1t +
Take note, these solutions are particular solutions! If your
solution has to respect given initial conditions, you must consider
also the homogeneous solution.



X =Y. aicosw;t + b+ isinw;t

mx(t)/Ast

Xp — - -Xg — Xp —mon

.......... Xq
| | | |

1 15 2 25 3
t/Tp
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It is possible to extend the Fourier analysis to non periodic
loading. Let's start from the Fourier series representation
of the load p(t),

+o00 o
p(t) = Z Pr eXp(iwrt), wr = rAw, Aw= ?p,
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It is possible to extend the Fourier analysis to non periodic
loading. Let’s start from the Fourier series representation
of the load p(t),
“+o00

Extension o f Fourier Series
) 27.(_ to knof\ D‘ervod‘l‘c f?n‘ctl‘c‘)r:s'
= E Prexp(iwet), wr=rAw, Aw=—, Dormar ‘

Tp
introducing P(iwr) = P, T, and substituting,

A
p(t) = T ZP (iwr) exp(iw,t) = ZP (iwr) exp(iw,t).



Non periodic loadings ot
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It is possible to extend the Fourier analysis to non periodic
loading. Let’s start from the Fourier series representation
of the load p(t),
“+o00

Extension of f Fourier Series
. 2m e

= E Prexp(iw,t), wy=rAw, Aw= - ey

p

introducing P(iwr) =P, T, and substituting,
(t) = P (iwr) exp(iw,t) = A P (iwr) exp(iw,t).
P T

Due to periodicity, we can modify the extremes of
integration in the expression for the complex amplitudes,

+Tp/2
P(iw,) = / p(t) exp(—iw,t) dt.
—Tp/2
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If the loading period is extended to infinity to represent the Extension|of Fourier Series
non-periodicity of the loading (7, — oo) then (a) the frequency B
increment becomes infinitesimal (Aw = 2%; — dw) and (b) the o

discrete frequency w, becomes a continuous variable, w.

In the limit, for T, — oo we can then write

p(t) = % /HO P(iw) exp(iwt) dw

—00

P(iw) :/+oo p(t) exp(—iwt) dt,

oo

which are known as the inverse and the direct Fourier Transforms,
respectively, and are collectively known as the Fourier transform pair.



SDOF Response ot
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In analogy to what we have seen for periodic loads, the response of a
damped SDOF system can be written in terms of H(iw), the complex P -
frequency response function, EEPAER R iR (TRIaTe

Domain

I R : :
x(t) = ﬁ/ H(iw) P(iw) exp iwt dt, where

0o

H(iw)

1 S [(1—62)—1'(246) w

¢l rem o

(1-82)2+(2¢B)?]" Wh
To obtain the response through frequency domain, you should evaluate
the above integral, but analytical integration is not always possible and
also when it is possible it is usually very difficult, implying contour
integration in the complex plane (e.g., the Example E6-3 in Clough
Penzien presents a detailed derivation).



Response to Periodic Loading

Fourier Transform

The Discrete Fourier Transform
The Discrete Fourier Transform
Aliasing
The Fast Fourier Transform

Response to General Dynamic Loadings



Discrete Fourier Transform SDOF finear
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To overcome the analytical difficulties associated with the inverse
Fourier transform, one can use appropriate numerical methods, leading
to good approximations. e
Consider a loading of finite period T, divided into N equal intervals B
At = T,/N, and the set of values ps = p(ts) = p(sAt). We can et
approximate the complex amplitude coefficients with a sum,

1 [T

P = - p(t) exp(—iw,t) dt, that, by trapezoidal rule, is
pJo

N-1 N—
1 nrs
~ NAT <Aths exp(—iwrts) ) Z ps exp( —/ )

s=0

2




Discrete Fourier Transform (2)

In the last two passages we have used the relations
pn = po,  expliwrty) = exp(irAwT,) = exp(ir2m) = exp(i0)
2n Tp _ 2mrs

w,ts:rAwsAt:rs?p NN

27rs

Take note that the discrete function exp(—/<5*), defined for integer
r, s is periodic with period N, implying that the complex amplitude
coefficients are themselves periodic with period N.

Pr+N = Pr

Starting in the time domain with N distinct complex numbers, ps, we
have found that in the frequency domain our load is described by N
distinct complex numbers, P, so that we can say that our function is
described by the same amount of information in both domains.

SDOF linear
oscillator

Giacomo Boffi

The Discrete Fourier
Transform

The Fast Fourie
Transfo



Aliasing

Only N/2 distinct frequen-
cies (X0 = Zf%g) con-
tribute to the load represen- |
tation, what if the frequency
content of the loading hasf *
contributions from frequen-z ,
cies higher than wpy/»? What *
happens is aliasing, i.e., the
upper frequencies contribu- | |
tions are mapped to contri-  ° w2 ¥e omoww em e gmzoenmoom e o

butions of lesser frequency.
See the plot above: the contributions from the high frequency sines,

when sampled, are indistinguishable from the contributions from lower
frequency components, i.e., are aliased to lower frequencies!

" sin(7 2p1 ) ——
Sin (7 2pi ) sampled @12pts per signal period @
an(5 2pi ) ——

05 -

SDOF linear
oscillator
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The Discrets ourier
Transform

Aliasing

The Fast Fourier



Aliasing (2)

» The maximum frequency that can be described in the

DFT is called the Nyquist frequency, wyy = 2 2=

» It is usual in signal analysis to remove the signal’s
higher frequency components preprocessing the signal
with a filter or a digital filter.

» It is worth noting that the resolution of the DFT in the
frequency domain for a given sampling rate is
proportional to the number of samples, i.e., to the
duration of the sample.

SDOF linear
oscillator

Giacomo Boffi

Aliasing



The operation count in a DFT is in the order of N2

A Fast Fourier Transform is an algorithm that reduces the
operation count.

The first and simpler FFT algorithm is the Decimation in
Time algorithm by Tukey and Cooley (1965).



Assume N is even, and divide the DFT summation to consider even
and odd indices s

N—-1
_27['15’,
X,—E Xse N7, r=0,...,N—1
s=0
N/2—-1 N/2—-1

_omi _omi
— } : Xoq€ i (2a)r + 2 : Xogi1€ A (2g+1)r
q=0 q=0



Assume N is even, and divide the DFT summation to consider even
and odd indices s

N—-1 .
_27l'lsr
X,:E Xse N7, r=0,...,N—1
s=0

N/2-1 N/2-1
_omi _omi
— } : Xoq€ N (2q)r+ 2 : Xogi1€ A (2g+1)r
q=0 q=0

collecting e~ " in the second term and letting 2—,\7 = NL/2

N/2—-1 N/2—1
—2—mqr _2mi, _L"ﬂ'qr
— E que N/2 +e N E X2q+1€' N/2
=0

q=0



TUkey and COOIGy, 1965. SDOF linear

oscillator

Giacomo Boffi

Assume N is even, and divide the DFT summation to consider even
and odd indices s

N—-1
E — 2

Xy = Xse N7, r=0,...,.N—1
s=0

The Discrete Fourier

Transfc

N/2-1 N/2-1 .
2mi 2 Aliasin
= E quei%(Qq)r + E X2q+1 ei%(hﬁ—l)r The Fast Fourier
q=0 q=0

Transform

. _omi, . ]
collecting e” "~ " in the second term and letting 2—,\7 = /\/L/z

N/2—-1 N/2-1

_2mi _2mi _omi
= E Xoge NPV 4T W E Xogi1e N2
q=0 q=0

We have two DFT's of length N /2, the operations count is hence
2(N/2)?> = N?/2, but we have to combine these two halves in the full
DFT.



Tukey and Cooley, 1965.

Say that
2mi

X, =E +e N0,

where E, and O, are the even and odd half-DFT's, of which we
computed only coefficients from 0 to N/2 — 1.
To get the full sequence we have to note that

1. the E and O DFT's are periodic with period N/2, and
2. exp(=27i(r+N/2)/N) = e ™ exp(—2mir/N) = —exp(—2mir/N),
so that we can write
X — E; + exp(—2mir/N)O: if r <N/2,
" Er_njpo —exp(=2mir/N)O,_nso  if r > N/2.
The algorithm that was outlined can be applied to the computation of

each of the half-DFT's when N/2 were even, so that the operation
count goes to N?/4. If N/4 were even ...

SDOF linear
oscillator
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def fft2(X, N):
if N = 1 then

Y =X
else
YO = ££ft2(X0, N/2)

Y1 = £ft2(X1, N/2)
for k = 0 to N/2-1

Y_k = YO_k + exp(2 pi i k/N) Y1 k
Y_(k+N/2) = YO_k - exp(2 pi i k/N) Y1 _k
endfor
endif

return Y



SDOF linear

from cmath import exp, pi oscillator

def d_fft(x.n): Giacomo Boffi
"""Direct fft of x, a list of n=2%xm complex values
return _ fft(x,n,[exp(—2%pi*lj*k/n) for k in range(n/2)])

W

def i fft(x,n):
"I nverse fft of x, a list of n=2%«m complex values"""
transform = fft(x,n,[exp(+2+pi*ljxk/n) for k in range(n/2)])]
return [x/n for x in transform]

def fft(x, n, twiddle):

"""Decimation in Time FFT, to be called by d_fft and i_fft. ULl ceretelbotlies
X is the signal to transform, a list of complex values fransiorm
n is its length, results are undefined if n is not a power of 2 Gl
tw is a list of twiddle factors, precomputed by the caller g‘:n;f::"“”e’

returns a list of complex values, to be normalized in case of an
inverse transform"""

if n == 1: return x # bottom reached, DFT of a length 1 vec x is x

# call fft with the even and the odd coefficients in x
# the results are the so called even and odd DFT's

y 0= fft(x[0::2], n/2, tw[::2])

y_ 1 = _fft(x[1::2], n/2, tw[::2])

# assemble the partial results "in_place":
# 1st half of full DFT is put in even DFT, 2nd half in odd DFT

for k in range(n/2):
y_O[k]., y_1[k] =y _O[k]+tw[k]«y_ 1[k], y_0 [k]—-tw[k]«y_ 1[k]

# concatenate the two halves of the DFT and return to caller
return y O+y 1
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def main():

"""Run some test cases"""
from cmath import cos, sin, pi

def testit(title , seq):
"""yutility to format and print a vector and the ifft of its fft"""

| _seq = len(seq) rete Fourier
print "—"x5, title , "—"x5
print "\n".join ([ Aliasing
"%10.6f :: %10.6f, %10.6fj" % (a.real, t.real, t.imag) The Fast Fourier
for (a, t) in zip(seq, i_fft(d_ fft(seq, | _seq), |_seq)) Transform
D
length = 32
testit ("Square wave", [+1.0+0.0j]=(length/2) + [—1.0+0.0j]«(length/2))
testit ("Sine wave", [sin((2*pixk)/length) for k in range(length)])
testit ("Cosine wave", [cos((2*xpixk)/length) for k in range(length)])

name == "__main__

n.



Dynamic Response (1)

To evaluate the dynamic response of a linear SDOF system in the
frequency domain use the inverse DFT,

N
27 rs

Xs = Z Vi exp(i
r=0
where V, = H, P,. P, are the discrete complex amplitude coefficients
computed using the direct DFT, and H, is the discretization of the
complex frequency response function, that for viscous damping is
H—l[ 1 ]_;[(1763)4(%@)} g, =Y
Tk L-sY)+i(2¢B) (1-p2)2+ (262 7

), s=01,... N—1

k

while for hysteretic damping is
H_;[ 1 }_1{U—ﬁ%ﬂ%w
T k(-8 +i(20)] T k| (1-82)24(20)2]"

_wn_

SDOF linear
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If you're going to approach the application of the complex
frequency response function without proper concern, you're
likely to be hurt.



If you're going to approach the application of the complex
frequency response function without proper concern, you're
likely to be hurt.

Let'ssay Aw =1.0, N =32, w, = 3.5 and r = 30, what do
you think it is the value of 8307




Some words of caution

If you're going to approach the application of the complex
frequency response function without proper concern, you're
likely to be hurt.

Let'ssay Aw =1.0, N =32, w, = 3.5 and r = 30, what do
you think it is the value of 8397 If you are thinking

B30 = 30 Aw/w, = 30/3.5 ~ 8.57 you're wrong!

SDOF linear
oscillator
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Discrete Fourier

The Fast Fourier
Transform



Some words of caution See

Giacomo Boffi

If you're going to approach the application of the complex
frequency response function without proper concern, you're
likely to be hurt.

Let'ssay Aw =1.0, N =32, w, = 3.5 and r = 30, what do
you think it is the value of 8397 If you are thinking -
B30 = 30 Aw/w, = 30/3.5 ~ 8.57 you're wrong! oRs R
rAw r<nN/2

(r—N)Aw r>N/2’

note that in the upper part of the DFT the coefficients

correspond to negative frequencies and, staying within our

example, it is B39 = (30 — 32) x 1/3.5 ~ —0.571.

If N is even, Py s is the coefficient corresponding to the

Nyquist frequency, if N is odd Pn-—1 corresponds to the

Due to aliasing, w, =

2
largest positive frequency, while Pyi1 corresponds to the
2
largest negative frequency.
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Relationship between time and frequency domain



Response to a short duration load

An approximate procedure to evaluate the maximum
displacement for a short impulse loading is based on the
impulse-momentum relationship,

mAx = /O [p(t) — kx(2)] dt.

When one notes that, for small ty, the displacement is of
the order of t2 while the velocity is in the order of to, it is
apparent that the kx term may be dropped from the above
expression, i.e.,

to
mAX&/ p(t) dt.
0

SDOF linear
oscillator

Giacomo Boffi
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impulse



Response to a short duration load

Using the previous approximation, the velocity at time ty is

K(ty) = ;/Oto p(t) dt,

and considering again a negligibly small displacement at the
end of the loading, x(tp) = 0, one has

x(t —tg) =

/Oto p(t) dt sinwn(t — to).

mwh,

Please note that the above equation is exact for an
infinitesimal impulse loading.

SDOF linear
oscillator

Giacomo Boffi

Response to infinitesimal
impulse




Undamped SDOF ot
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For an infinitesimal impulse, the impulse-momentum is
exactly p(7) dT and the response is

p(T)dT

n

dx(t—7) = sinwp(t—7), t>T,

Response to infinitesimal
impulse

and to evaluate the response at time t one has simply to T
sum all the infinitesimal contributions for T < t, S

1

t
X(t):mwn/o p(T) sinwn(t —T)dT, t>0.

This relation is known as the Duhamel integral, and tacitly
depends on initial rest conditions for the system.



Undamped SDOF ot
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For an infinitesimal impulse, the impulse-momentum is
exactly p(7) dT and the response is

p(T)dT

n

dx(t—7) = sinwy(t—T), t>T,

Response to infinitesimal
impulse

and to evaluate the response at time t one has simply to T
sum all the infinitesimal contributions for T < t, S

1

t
X(t):mwn/o p(T) sinwn(t —T)dT, t>0.

This relation is known as the Duhamel integral, and tacitly
depends on initial rest conditions for the system.



Damped SDOF ot
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The derivation of the equation of motion for a generic load
is analogous to what we have seen for undamped SDOF,
the infinitesimal contribution to the response at time t of
the load at time 7 is

Response to infinitesimal
impulse

dx(t) = 57(007—; dr sinwp(t — T)exp(—Cwn(t —7)) t>T ‘

and integrating all infinitesimal contributions one has e

x(t) = mjuD /Otp(T) sinwp(t—T) exp(—Cwn(t—T))dT, t>0.
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Evaluation of Duhamel integral, undamped oscillator

Giacomo Boffi

Using the trig identity
sin(wnt — wnT) = Sinwpt COSWnT — COSWnt SiNwWnT

the Duhamel integral is rewritten as

Response to infinitesir
impu

t .
[¥ p(T) coswnT dT Jo p(T)sinwaT dT e ntgrion of
x(t) = 0P o sinwpt — =9 o coswnt ', ”Af’f ’m‘pedlso}ofs‘mms
= A(t)sinwnt — B(t) coswnt
where

A(t) = =2 [1 p(T) cosw,T dT

mwy JO
B(t) = 7o s p(T)sinwaT dT




Usual numerical procedures can be applied to the evaluation
of A and B, e.g., using the trapezoidal rule, one can have,
with Ay = A(NAT) and yy = p(NAT) cos(NAT)

T Relationship between time

2mwn (yN + yN+1) . and frequency domain

.AN+1 = .AN +



For a damped system, it can be shown that
x(t) = A(t)sinwpt — B(t) coswpt

with

exp (wn T
t)= coswpT dT,
A( ) mw / ( ) exp C n t D Relationship between time

and frequency domain

B(t) = — e / p(T ):((zg ot sinwpT dT.



Numerically, using e.g. Simpson integration rule and
yn = p(NAT) coswpT,

Anso = Ay exp(—2Cwn AT)+

AT
—— [yn exp(—2Cwn AT) + dynt1 exp(—CwnAT) + yn2] R

3mwp
N=024,---



SDOF linear

Transfer Functions e
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The response of a linear SDOF system to arbitrary loading
can be evaluated by a convolution integral in the time
domain,

X(t) = /0 p(7) h(t — 7) dT,

with the unit impulse response function Numerica negra
h(t) = miwo exp(—Cwnt) sin(wpt), or through the frequency S

mped SDOF syst

domain using the Fourier integral oot wetueen e
+o0o
x(t) = / H(w)P(w) exp(iwt) dw,
—0o0

where H(w) is the complex frequency response function.



These response functions, or transfer functions, are
connected by the direct and inverse Fourier transforms:

H(w) = /_ T h(t) exp(—iwt) dt.
1

(t) = o /_ ™ Hw) expliwt) dw.



Relationship of transfer functions

We write the response and its Fourier transform:

X(t):/otp(’T)h(t—T) dT:/_t p(T)h(t —T)dT

oo

X(w) = /+oo [/t p(T)h(t —T) d’T} exp(—iwt) dt

—00 o0

the lower limit of integration in the first equation was
changed from 0 to —oo because p(7) = 0 for 7 < 0, and

since h(t —7) = 0 for 7 > t, the upper limit of the second

integral in the second equation can be changed from t to
+o0,

+s
= lim / / h(t — T)exp(—iwt) dt dT
S—00

SDOF linear
oscillator
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Duhamel integral

Relationship between time
and frequency domain
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Relationship of transfer functions oscilator
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Introducing a new variable 8 = t — T we have

X(w) = lim /+s p(T) exp(—iwT) dT /+S_T h(6) exp(—iwb) db

S0 J_s —s5—T

with lim s — 7 = oo, we finally have Response to nintes
s—o00

+oo +o0 v ‘ n
xX@ = [ pmee-wndr [ no)es-weds

+oo
_ P(w) / h(6) exp(—iwb) df

—00

where we have recognized that the first integral is the
Fourier transform of p(t).



Relationship of transfer functions

Our last relation was
X(w) = P(w) / h(6) exp(—iwd) dO

but X(w) = H(w)P(w), so that, noting that in the above
equation the last integral is just the Fourier transform of
h(6), we may conclude that, effectively, H(w) and h(t)
form a Fourier transform pair.

SDOF linear
oscillator
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mped SDOF syst

Relationship between time
and frequency domain
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