
EP Exact+Numerical

April 9, 2015

In [1]: %pylab inline

%config InlineBackend.figure_format = ’svg’

import json

s = json.load(open("mplrc.json"))

matplotlib.rcParams.update(s)

matplotlib.rcParams[’figure.figsize’] = 9,4

black="#404060" # plots containing "real black" elements look artificial

from IPython.core.display import HTML

def css_styling():

styles = open("this_custom.css", "r").read()

return HTML(styles)

css_styling()

Populating the interactive namespace from numpy and matplotlib

/usr/lib/python2.7/dist-packages/matplotlib/ init .py:857: UserWarning: svg.embed char paths is deprecated and replaced with svg.fonttype; please use the latter.

warnings.warn(self.msg depr % (key, alt key))

Out[1]: <IPython.core.display.HTML at 0x7f6b9c5b2990>

1 Exact Integration for an EP SDOF System

We want to compute the response, using the constant acceleration algorithm plus MNR, of an Elasto Plastic
(EP) system. . . but how we can confirm or reject our results?

It turns out that computing the exact response of an EP system with a single degree of freedom is
relatively simple.

Here we discuss a program that computes the analytical solution of our problem.
The main building blocks of the program will be two functions that compute, for the elastic phase and

for the plastic phase, the analytical functions that give the displacement and the velocity as functions of
time.

1.1 Elastic response

We are definining a function that, for a linear dynamic system, returns not the displacement or the velocity
at a given time, but rather a couple of functions of time that we can use afterwards to compute displacements
and velecities at any time of interest.

The response depends on the parameters of the dynamic system m, c, k, on the initial conditions x0, v0,
and on the characteristics of the external load.

Here the external load is limited to a linear combination of a cosine modulated, a sine modulated (both
with the same frequency ω) and a constant force,

P (t) = cC cosωt+ cS sinωt+ F,
but that’s all that is needed for the present problem.
The particular integral being

1

ξ(t) = S cosωt+R sinωt+D,
substituting in the equation of motion and equating all the corresponding terms gives the undetermined

coefficients in ξ(t), then evaluation of the general integral and its time derivative for t = 0 permits to find
the constants in the homogeneous part of the integral.

The final step is to define the displacement and the velocity function, according to the constants we have
determined, and to return these two function to the caller

In [2]: def resp_elas(m,c,k, cC,cS,w, F, x0,v0):

wn2 = k/m ; wn = sqrt(wn2) ; beta = w/wn

z = c/(2*m*wn)

wd = wn*sqrt(1-z*z)

xi(t) = R sin(w t) + S cos(w t) + D

det = (1.-beta**2)**2+(2*beta*z)**2

R = ((1-beta**2)*cS + (2*beta*z)*cC)/det/k

S = ((1-beta**2)*cC - (2*beta*z)*cS)/det/k

D = F/k

A = x0-S-D

B = (v0+z*wn*A-w*R)/wd

def x(t):

return exp(-z*wn*t)*(A*cos(wd*t)+B*sin(wd*t))+R*sin(w*t)+S*cos(w*t)+D

def v(t):

return (-z*wn*exp(-z*wn*t)*(A*cos(wd*t)+B*sin(wd*t))

+wd*exp(-z*wn*t)*(B*cos(wd*t)-A*sin(wd*t))

+w*(R*cos(w*t)-S*sin(w*t)))

return x,v

1.2 Plastic response

In this case the equation of motion is
mẍ+ cẋ = P (t),
the homogeneous response is
x(t) = A exp(− c

m t) +B,
and the particular integral, for a load described as in the previous case, is again
ξ(t) = S cosωt+R sinωt+D.
Having computed R,S, and D from substituting ξ in the equation of motion, A and B by imposing

the initial conditions,we can define the displacement and velocity functions and, finally, return these two
functions to the caller.

In [3]: def resp_yield(m,c, cC,cS,w, F, x0,v0):

csi(t) = R sin(w t) + S cos(w t) + Q t

Q = F/c

det = w**2*(c**2+w**2*m**2)

R = (+w*c*cC-w*w*m*cS)/det

S = (-w*c*cS-w*w*m*cC)/det

x(t) = A exp(-c t/m) + B + R sin(w t) + S cos(w t) + Q t

v(t) = - c A/m exp(-c t/m) + w R cos(w t) - w S sin(w t) + Q

#

v(0) = -c A / m + w R + Q = v0

A = m*(w*R + Q - v0)/c

x(0) = A + B + S = x0

B = x0 - A - S

def x(t):

2

return A*exp(-c*t/m)+B+R*sin(w*t)+S*cos(w*t)+Q*t

def v(t):

return -c*A*exp(-c*t/m)/m+w*R*cos(w*t)-w*S*sin(w*t)+Q

return x,v

1.2.1 An utility function

We need to find when

1. the spring yields

2. the velocity is zero

to individuate the three ranges of different behaviour

1. elastic

2. plastic

3. elastic, with permanent deformation.

We can use the simple and robust algorithm of bisection to find the roots for
xel(t) = xy and ẋep(t) = 0.

In [4]: def bisect(f,val,x0,x1):

h = (x0+x1)/2.0

fh = f(h)-val

if abs(fh)<1e-8 : return h

f0 = f(x0)-val

if f0*fh > 0 :

return bisect(f, val, h, x1)

else:

return bisect(f, val, x0, h)

1.3 The system parameters

In [5]: mass = 1000. # kg

k = 40000. # N/m

zeta = 0.03 # damping ratio

fy = 2500. # N

1.4 Derived quantities

The damping coefficient c and the first yielding displacement, xy.

In [6]: damp = 2*zeta*sqrt(k*mass)

xy = fy/k # m

1.5 Load definition

Our load is a half-sine impulse

p(t) =

{
p0 sin(πtt1) 0 ≤ t ≤ t1,
0 otherwise.

In our exercise

In [7]: t1 = 0.3 # s

w = pi/t1 # rad/s

Po = 6000. # N

3

1.6 The actual computations

1.6.1 Elastic, initial conditions, get system functions

In [8]: x0=0.0 # m

v0=0.0 # m/s

x_next, v_next = resp_elas(mass,damp,k, 0.0,Po,w, 0.0, x0,v0)

1.6.2 Yielding time is

The time of yielding is found solving the equation xnext(t) = xy

In [9]: t_yield = bisect(x_next, xy, 0.0, t1)

print t_yield, x_next(t_yield)*k

0.203265702724 2500.00009219

1.6.3 Forced response in elastic range is

In [10]: t_el = linspace(0.0, t_yield, 201)

x_el = vectorize(x_next)(t_el)

v_el = vectorize(v_next)(t_el)

In [11]: figure(0)

plot(t_el,x_el)

axhline(xy,linewidth=0.2)

axvline(t_yield,linewidth=0.2)

title("$x_{el}(t)$")

xlabel("Time, s")

ylabel("Displacement, m")

figure(1)

plot(t_el,v_el)

title("$\dot x_{el}(t)$")

xlabel("Time, s")

ylabel("Velocity, m/s");

4

1.6.4 Preparing for EP response

First, the system state at ty is the initial condition for the EP response

In [12]: x0=x_next(t_yield)

v0=v_next(t_yield)

print x0, v0

0.0625000023047 0.709743249699

now, the load must be expressed in function of a restarted time,
τ = t− ty → t = τ + ty → sin(ωt) = sin(ωτ + ωty)
→ sin(ωt) = sin(ωτ) cos(ωty) + cos(ωτ) sin(ωty)

In [13]: cS = Po*cos(w*t_yield)

cC = Po*sin(w*t_yield)

print Po*sin(w*0.55), cS*sin(w*(0.55-t_yield))+cC*cos(w*(0.55-t_yield))

-3000.0 -3000.0

Now we generate the displacement and velocity functions for the yielded phase, please note that the
yielded spring still exerts a constant force fy on the mass, and that this fact must be (and it is) taken into
account.

In [14]: x_next, v_next = resp_yield(mass, damp, cC,cS,w, -fy, x0,v0)

At this point I must confess that I have already peeked the numerical solution, hence I know that the
velocity at t = t1 is greater than 0 and I know that the current solution is valid in the interval ty ≤ t ≤ t1.

In [15]: t_y1 = linspace(t_yield, t1, 101)

x_y1 = vectorize(x_next)(t_y1-t_yield)

v_y1 = vectorize(v_next)(t_y1-t_yield)

5

In [16]: figure(3)

plot(t_el,x_el, t_y1,x_y1,

(0,0.25),(xy,xy),’--b’,

(t_yield,t_yield),(0,0.0699),’--b’)

xlabel("Time, s")

ylabel("Displacement, m")

figure(4)

plot(t_el, v_el, t_y1, v_y1)

xlabel("Time, s")

ylabel("Velocity, m/s");

In the next phase, still it is ẋ > 0 so that the spring is still yielding, but now p(t) = 0, so we must
compute two new state functions, starting as usual from the initial conditions (note that the yielding force
is still applied)

6

In [17]: x0 = x_next(t1-t_yield)

v0 = v_next(t1-t_yield)

print x0, v0

x_next, v_next = resp_yield(mass, damp, 0, 0, w, -fy, x0, v0)

t2 = t1 + bisect(v_next, 0.0, 0, 0.3)

print t2

t_y2 = linspace(t1, t2, 101)

x_y2 = vectorize(x_next)(t_y2-t1)

v_y2 = vectorize(v_next)(t_y2-t1)

print x_next(t2-t1)

0.135209330223 0.709996878577

0.569713139534

0.229324078054

In [18]: figure(5)

plot(t_el,x_el, t_y1,x_y1, t_y2, x_y2,

(0,0.25),(xy,xy),’--b’,

(t_yield,t_yield),(0,0.0699),’--b’)

xlabel("Time, s")

ylabel("Displacement, m")

figure(6)

plot(t_el, v_el, t_y1, v_y1, t_y2, v_y2)

xlabel("Time, s")

ylabel("Velocity, m/s");

7

1.6.5 Elastic unloading

The only point worth commenting is the constant force that we apply to our system.
The force-displacement relationship for an EP spring is
fE = k(x− xpl) = kx− k(xmax − xy)
taking the negative, constant part of the last expression into the right member of the equation of equi-

librium we have a constant term, as follows

In [19]: x0 = x_next(t2-t1) ; v0 = 0.0

x_next, v_next = resp_elas(mass,damp,k, 0.0,0.0,w, k*x0-fy, x0,v0)

t_e2 = linspace(t2,4.0,201)

x_e2 = vectorize(x_next)(t_e2-t2)

v_e2 = vectorize(v_next)(t_e2-t2)

now we are ready to plot the whole response

In [20]: figure(7)

plot(t_el, x_el, ’-b’,

t_y1, x_y1, ’-r’,

t_y2, x_y2, ’-r’,

t_e2, x_e2, ’-b’,

(0.6, 4.0), (x0-xy, x0-xy), ’--y’)

title("In blue: elastic phases.\n"+

"In red: yielding phases.\n"+

"Dashed: permanent plastic deformation.")

xlabel("Time, s")

ylabel("Displacement, m");

8

1.7 Numerical solution

first, we need the load function

In [21]: def make_p(p0,t1):

"""make_p(p0,t1) returns a 1/2 sine impulse load function, p(t)"""

def p(t):

""

if t<t1:

return p0*sin(t*pi/t1)

else:

return 0.0

return p

and also a function that, given the displacement, the velocity and the total plastic deformation, returns
the stiffness and the new p.d.; this function is defined in terms of the initial stiffness and the yielding load

In [22]: def make_kt(k,fy):

"make_kt(k,fy) returns a function kt(u,v,up) returning kt, up"

def kt(u,v,up):

f=k*(u-up)

if (-fy)<f<fy: return k,up

if fy<=f and v>0: up=u-uy;return 0,up

if fy<=f and v<=0: up=u-uy;return k,up

if f<=(-fy) and v<0: up=u+uy;return 0,up

else: up=u+uy;return k,up

return kt

1.7.1 Problem data

In [23]: # Exercise from lesson 04

#

9

mass = 1000.00 # kilograms

k = 40000.00 # Newtons per metre

zeta = 0.03 # zeta is the damping ratio

fy = 2500.00 # yelding force, Newtons

t1 = 0.30 # half-sine impulse duration, seconds

p0 = 6000.00 # half-sine impulse peak value, Newtons

uy = fy/k # yelding displacement, metres

1.7.2 Initialize the algorithm

1. compute the functions that return the load and the tangent sstiffness + plastic deformation

2. compute the damping constant

3. for a given time step, compute all the relevant algorithmic constants, with γ = 1
2 and β = 1

4

In [24]: # using the above constants, define the loading function

p=make_p(p0,t1)

the following function, given the final displacement, the final

velocity and the initial plastic deformation returns a) the tangent

stiffness b) the final plastic deformation

kt=make_kt(k,fy)

we need the damping coefficient "c", to compute its value from the

damping ratio we must first compute the undamped natural frequency

wn=sqrt(k/mass) # natural frequency of the undamped system

damp=2*mass*wn*zeta # the damping coefficient

the time step

h=0.005

required duration for the response

t_end = 4.0

the number of time steps to arrive at t_end

nsteps=int((t_end+h/100)/h)+1

the maximum number of iterations in the Newton-Raphson procedure

maxiters = 30

using the constant acceleration algorithm

below we define the relevant algorithmic constants

gamma=0.5

beta=1./4.

gb=gamma/beta

a=mass/(beta*h)+damp*gb

b=0.5*mass/beta+h*damp*(0.5*gb-1.0)

1.7.3 System state initialization

and a bit more, in species we create two empty vectors to hold the computation results

In [25]: t0=0.0

u0=0.0

up=0.0

v0=0.0

p0=p(t0)

(k0, up)=kt(u0,v0,up)

a0=(p0-damp*v0-k0*(u0-up))/mass

time = []; disp = []

10

1.7.4 Iteration

We iterate over time and, if there is a state change, over the single time step to equilibrate the unbalanced
loadings

In [26]: for i in range(nsteps):

time.append(t0); disp.append(u0)

advance time, next external load value, etc

t1 = t0 + h

p1 = p(t1)

Dp = p1 - p0

Dp_= Dp + a*v0 + b*a0

k_ = k0 + gb*damp/h + mass/(beta*h*h)

we prepare the machinery for the modified Newton-Raphson

algorithm. if we have no state change in the time step, then the

N-R algorithm is equivalent to the standard procedure

u_init=u0; v_init=v0 # initial state

f_spring=k*(u0-up) # the force in the spring

DR=Dp_ # the unbalanced force, initially equal to the

external load increment

for j in range(maxiters):

Du=DR/k_ # the disp increment according to the initial stiffness

u_next = u_init + Du

v_next = v_init + gb*Du/h - gb*v_init + h*(1.0-0.5*gb)*a0

we are interested in the total plastic elongation

oops,up=kt(u_next,v_next,up)

because we need the spring force at the end

of the time step

f_spring_next=k*(u_next-up)

so that we can compute the fraction of the

incremental force that’s equilibrated at the

end of the time step

df=f_spring_next-f_spring+(k_-k0)*Du

and finally the incremental forces unbalanced

at the end of the time step

DR=DR-df

finish updating the system state

u_init=u_next

v_init=v_next

f_spring=f_spring_next

if the unbalanced load is small enough (the

criteria used in practical programs are

energy based) exit the loop

note that if we have no plasticization/unloading

then DR=0 at the end of the first iteration

if abs(DR)<fy*1E-6: break

now the load increment is balanced by the spring force and

increments in inertial and damping forces, we need to compute the

full state at the end of the time step, and to change all

denominations to reflect the fact that we are starting a new time step.

Du=u_init-u0

Dv=gamma*Du/(beta*h)-gamma*v0/beta+h*(1.0-0.5*gamma/beta)*a0

u1=u0+Du ; v1=v0+Dv

11

k1,up=kt(u1,v1,up)

a1=(p(t1)-damp*v1-k*(u1-up))/mass

t0=t1; v0=v1; u0=u1 ; a0=a1 ; k0=k1 ; p0=p1

1.7.5 Plotting our results

We plot red crosses for the numericaly computed response and a continuous line for the results of the
analytical integration of the equation of motion.

In [27]: figure(8)

plot(time[::4],disp[::4],’xr’)

plot(t_el, x_el, ’-b’,

t_y1, x_y1, ’-r’,

t_y2, x_y2, ’-r’,

t_e2, x_e2, ’-b’,

(0.6, 4.0), (x0-xy, x0-xy), ’--y’)

title("Continuous line: exact response.\n"+

"Red crosses: constant acceleration + MNR.\n")

xlabel("Time, s")

ylabel("Displacement, m");

It looks good, but we can zoom on the zone of the last maximum,

In [28]: figure(9)

plot(time,disp,’xr’)

plot(t_el, x_el, ’-b’,

t_y1, x_y1, ’-r’,

t_y2, x_y2, ’-r’,

t_e2, x_e2, ’-b’,

(0.6, 4.0), (x0-xy, x0-xy), ’--y’)

title("Continuous line: exact response.\n"+

"Red crosses: constant acceleration + MNR.\n")

12

xlim((3.5,3.6))

ylim((0.19,0.21))

xlabel("Time, s")

ylabel("Displacement, m");

and also on the last zone of peak velocity

In [29]: figure(10)

plot(time,disp,’xr’)

plot(t_el, x_el, ’-b’,

t_y1, x_y1, ’-r’,

t_y2, x_y2, ’-r’,

t_e2, x_e2, ’-b’,

(0.6, 4.0), (x0-xy, x0-xy), ’--y’)

title("Continuous line: exact response.\n"+

"Red crosses: constant acceleration + MNR.\n")

xlim((3.775,3.825))

ylim((0.162,0.174))

xlabel("Time, s")

ylabel("Displacement, m");

13

As you can see, the error in the numerically computed solution (due to the the problem simplicity) is
really small.

14

	Exact Integration for an EP SDOF System
	Elastic response
	Plastic response
	An utility function

	The system parameters
	Derived quantities
	Load definition
	The actual computations
	Elastic, initial conditions, get system functions
	Yielding time is
	Forced response in elastic range is
	Preparing for EP response
	Elastic unloading

	Numerical solution
	Problem data
	Initialize the algorithm
	System state initialization
	Iteration
	Plotting our results

