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Piecewise exact method

I We use the exact solution of the equation of motion
for a system excited by a linearly varying force, so the
source of all errors lies in the piecewise linearisation of
the force function and in the approximation due to a
local linear model.

I We will see that an appropriate time step can be
decided in terms of the number of points required to
accurately describe either the force or the response
function.
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Piecewise exact method

For a generic time step of duration h, consider
I {x0, ẋ0} the initial state vector,
I p0 and p1, the values of p(t) at the start and the end

of the integration step,
I the linearised force

p(τ) = p0 + ατ, 0 ≤ τ ≤ h, α = (p(h)− p(0))/h,

I the forced response

x = e−ζωτ (A cos(ωDτ)+B sin(ωDτ))+(αkτ+kp0−αc)/k2,

where k and c are the stiffness and damping of the
SDOF system.
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Piecewise exact method

Evaluating the response x and the velocity ẋ for τ = 0 and
equating to {x0, ẋ0}, writing ∆st = p(0)/k and
δ(∆st) = (p(h)− p(0))/k , one can find A and B

A =

(
ẋ0 + ζωB − δ(∆st)

h

)
1
ωD

B = x0 +
2ζ
ω

δ(∆st)

h
−∆st

substituting and evaluating for τ = h one finds the state
vector at the end of the step.
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Piecewise exact method

With

Sζ,h = sin(ωDh) exp(−ζωh) and Cζ,h = cos(ωDh) exp(−ζωh)

and the previous definitions of ∆st and δ(∆st), finally we can
write

x(h) = ASζ,h + B Cζ,h + (∆st + δ(∆st))− 2ζ
ω

δ(∆st)

h

ẋ(h) = A(ωDCζ,h − ζωSζ,h)− B(ζωCζ,h + ωDSζ,h) +
δ(∆st)

h

where

B = x0+
2ζ
ω

δ(∆st)

h
−∆st, A =

(
ẋ0 + ζωB − δ(∆st)

h

)
1
ωD
.
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Example

We have a damped system that is excited by a load in
resonance with the system, we know the exact response
and we want to compute a step-by-step approximation
using different step lengths.

m=1000kg,

k=4π2 1000N/m,

ω=2π,

ζ=0.05,

p(t) =
4π25N sin(2π t)
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Exact
h=T/4
h=T/8

h=T/16

It is apparent that you have a very good approximation
when the linearised loading is a very good approximation of
the input function, let’s say h ≤ T/10.
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Central differences

To derive the Central Differences Method, we write the eq.
of motion at time τ = 0 and find the initial acceleration,

mẍ0 + cẋ0 + kx0 = p0 ⇒ ẍ0 =
1
m

(p0 − cẋ0 − kx0)

On the other hand, the initial acceleration can be expressed
in terms of finite differences,

ẍ0 =
x1 − 2x0 + x−1

h2
=

1
m

(p0 − cẋ0 − kx0)

solving for x1

x1 = 2x0 − x−1 +
h2

m
(p0 − cẋ0 − kx0)
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Central differences

We have an expression for x1, the displacement at the end of the
step,

x1 = 2x0 − x−1 +
h2

m
(p0 − cẋ0 − kx0),

but we have an additional unknown, x−1... if we write the finite
differences approximation to ẋ0 we can find an approximation to
x−1 in terms of the initial velocity ẋ0 and the unknown x1

ẋ0 =
x1 − x−1

2h
⇒ x−1 = x1 − 2hẋ0

Substituting in the previous equation

x1 = 2x0 − x1 + 2hẋ0 +
h2

m
(p0 − cẋ0 − kx0),

and solving for x1

x1 = x0 + hẋ0 +
h2

2m
(p0 − cẋ0 − kx0)
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Central differences

x1 = x0 + hẋ0 +
h2

2m
(p0 − cẋ0 − kx0)

To start a new step, we need the value of ẋ1, but we may
approximate the mean velocity, again, by finite differences

ẋ0 + ẋ1
2

=
x1 − x0

h
⇒ ẋ1 =

2(x1 − x0)

h
− ẋ0

The method is very simple, but it is conditionally stable.
The stability condition is defined with respect to the natural
frequency, or the natural period, of the SDOF oscillator,

ωnh ≤ 2⇒ h ≤ Tn

π
≈ 0.32Tn

For a SDOF this is not relevant because, as we have seen
in our previous example, we need more points for response
cycle to correctly represent the response.
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Methods based on Integration

We will make use of an hypothesis on the variation of the
acceleration during the time step and of analytical
integration of acceleration and velocity to step forward
from the initial to the final condition for each time step.
In general, these methods are based on the two equations

ẋ1 = ẋ0 +

∫ h

0
ẍ(τ) dτ,

x1 = x0 +

∫ h

0
ẋ(τ) dτ,

which express the final velocity and the final displacement
in terms of the initial values x0 and ẋ0 and some definite
integrals that depend on the assumed variation of the
acceleration during the time step.
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Integration Methods

Depending on the different assumption we can make on the
variation of velocity, different integration methods can be
derived.
We will see
I the constant acceleration method,
I the linear acceleration method,
I the family of methods known as Newmark Beta

Methods, that comprises the previous methods as
particular cases.

Constant Acceleration
Here we assume that the acceleration is constant during each
time step, equal to the mean value of the initial and final values:

ẍ(τ) = ẍ0 + ∆ẍ/2,

ẋ(τ) = ẋ0 +

∫ τ

0
ẍ(θ) dθ = ẋ0 + (ẍ0 + ∆ẍ/2)τ,

x(τ) = x0 +

∫ τ

0
ẋ(θ) dθ = x0 + ẋ0τ + (ẍ0 + ∆ẍ/2)τ2/2

where ∆ẍ = ẍ1 − ẍ0, hence

ẋ1 = ẋ0 + ẍ0h + ∆ẍ
h
2

⇒ ∆ẋ = ẍ0h + ∆ẍ
h
2

x1 = x0 + ẋ0h + (ẍ0)
h2

2
+ ∆ẍ

h2

4

⇒ ∆x = ẋ0h + (ẍ0)
h2

2
+ ∆ẍ

h2

4
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Constant acceleration

Taking into account the two equations on the right of the
previous slide, and solving for ∆ẋ and ∆ẍ in terms of ∆x ,
we have

∆ẋ =
2∆x − 2hẋ0

h
, ∆ẍ =

4∆x − 4hẋ0 − 2ẍ0h2

h2
.

We have two equations and three unknowns... Assuming
that the system characteristics are constant during a single
step, we can write the equation of motion at times τ = h
and τ = 0, subtract member by member and write the
incremental equation of motion

m∆ẍ + c∆ẋ + k∆x = ∆p,

that is a third equation that relates our unknowns.
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Constant acceleration

Substituting the above expressions for ∆ẋ and ∆ẍ in the
incremental eq. of motion and solving for ∆x gives, finally,

∆x =
p̃

k̃
, ∆ẋ =

2∆x − 2hẋ0
h

where

k̃ = k +
2c
h

+
4m
h2

p̃ = ∆p + 2cẋ0 + m(2ẍ0 +
4
h
ẋ0)

While it is possible to compute the final acceleration in
terms of ∆x , to achieve a better accuracy the final
acceleration is usually computed solving the equation of
equilibrium written at the end of the time step.
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Constant Acceleration

Two further remarks

1. The method is unconditionally stable

2. The effective stiffness, disregarding damping, is
k̃ ≈ k + 4m/h2.

Dividing both members of the above equation by k it is

k̃
k

= 1+
4

ω2
n h2 = 1+

4
(2π/Tn)2 h2 = 1+

T 2
n

π2h2 ,

The number nT of time steps in a period Tn is related to the time step
duration, nT = Tn/h, solving for h and substituting in our last
equation, we have

k̃
k
≈ 1+

n2
T

π2

E.g., for nT = 2π (approx. 6 points per cycle) it is k̃/k ≈ 1+ 4, the
mass contribution to the effective stiffness is four times the elastic
stiffness and the 80% of the total.
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Linear Acceleration

We assume that the acceleration is linear, i.e.

ẍ(t) = ẍ0 + ∆ẍ
τ

h

hence

∆ẋ = ẍ0h + ∆ẍh/2, ∆x = ẋ0h + ẍ0h2/2 + ∆ẍh2/6

Following a derivation similar to what we have seen in the
case of constant acceleration, we can write, again,

∆x =
(
k + 3

c
h

+ 6
m
h2

)−1 [
∆p + c(ẍ0

h
2

+ 3ẋ0) + m(3ẍ0 + 6
ẋ0
h

)

]

∆ẋ = ∆x
3
h
− 3ẋ0 − ẍ0

h
2
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Linear Acceleration

The linear acceleration method is conditionally stable, the
stability condition being

h
T
≤
√
3
π
≈ 0.55

When dealing with SDOF systems, this condition is never
of concern, as we need a shorter step to accurately describe
the response of the oscillator, let’s say h ≤ 0.12T ...
When stability is not a concern, the accuracy of the linear
acceleration method is far superior to the accuracy of the
constant acceleration method, so that this is the method of
choice for the analysis of SDOF systems.
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Newmark Beta Methods

The constant and linear acceleration methods are just two
members of the family of Newmark Beta methods, where
we write

∆ẋ = (1− γ)hẍ0 + γhẍ1

∆x = hẋ0 + (
1
2
− β)h2ẍ0 + βh2ẍ1

The factor γ weights the influence of the initial and final
accelerations on the velocity increment, while β has a
similar role with respect to the displacement increment.
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Newmark Beta Methods

Using γ 6= 1/2 leads to numerical damping, so when
analysing SDOF systems, one uses γ = 1/2 (numerical
damping may be desirable when dealing with MDOF
systems).
Using β = 1

4 leads to the constant acceleration method,
while β = 1

6 leads to the linear acceleration method. In the
context of MDOF analysis, it’s worth knowing what is the
minimum β that leads to an unconditionally stable
behaviour.

It turns out that, for γ = 0.5, the method is unconditionally
stable for β ≥ 0.25.
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Newmark Beta Methods

The general format for the solution of the incremental
equation of motion using the Newmark Beta Method can
be written as follows:

∆x =
∆p̃

k̃

∆v =
γ

β

∆x
h
− γ
β

v0 + h
(
1− γ

2β

)
a0

with

k̃ = k +
γ

β

c
h

+
1
β

m
h2

∆p̃ = ∆p +

(
h
(
γ

2β
− 1
)

c +
1
2β

m
)

a0 +

(
γ

β
c +

1
β

m
h

)
v0
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Non Linear Systems

A convenient procedure for integrating the response of a
non linear system is based on the incremental formulation
of the equation of motion, where for the stiffness and the
damping were taken values representative of their variation
during the time step: in line of principle, the mean values of
stiffness and damping during the time step, or, as this is
usually not possible, their initial values, k0 and c0.
The Newton-Raphson method can be used to reduce the
unbalanced forces at the end of the step.
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Non Linear Systems

Usually we use the modified Newton-Raphson method,
characterised by not updating the system stiffness at each
iteration. In pseudo-code, referring for example to the
Newmark Beta Method

x1,v1,f1 = x0,v0,f0 % initialisation
gb=gamma/beta
Dr = DpTilde
loop:

Dx = Dr/kTilde
x2 = x1 + Dx
v2 = gb*Dx/h + (1-gb)*v1 + (1-gb/2)*h*a0
x_pl = update_u_pl(...)
f2 = k*(x2-x_pl)
% important
Df = (f2-f1) + (kTilde-k_ini)*Dx
Dr = Dr - Df
x1, v1, f1 = x2, v2, f2
if ( tol(...) < req_tol ) BREAK loop
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Exercise

A system has a mass m = 1000kg, a stiffness
k = 40000N/m and a viscous damping whose ratio to the
critical damping is ζ = 0.03.
The spring is elastoplastic, with a yielding force of 2500N.
The load is an half-sine impulse, with duration 0.3s and
maximum value of 6000N.
Use the constant acceleration method to integrate the
response, with h = 0.05s and, successively, h = 0.02s .
Note that the stiffness is either 0 or k , write down the
expression for the effective stiffness and loading in the
incremental formulation, write a spreadsheet or a program
to make the computations.
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Introductory Remarks

Until now our SDOF’s were described as composed by a
single mass connected to a fixed reference by means of a
spring and a damper.
While the mass-spring is a useful representation, many
different, more complex systems can be studied as SDOF
systems, either exactly or under some simplifying
assumption.

1. SDOF rigid body assemblages, where flexibility is
concentrated in a number of springs and dampers, can
be studied, e.g., using the Principle of Virtual
Displacements and the D’Alembert Principle.

2. simple structural systems can be studied, in an
approximate manner, assuming a fixed pattern of
displacements, whose amplitude (the single degree of
freedom) varies with time.
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Further Remarks on Rigid Assemblages

Today we restrict our consideration to plane, 2-D systems.
In rigid body assemblages the limitation to a single shape of
displacement is a consequence of the configuration of the
system, i.e., the disposition of supports and internal hinges.
When the equation of motion is written in terms of a single
parameter and its time derivatives, the terms that figure as
coefficients in the equation of motion can be regarded as
the generalised properties of the assemblage: generalised
mass, damping and stiffness on left hand, generalised
loading on right hand.

m?ẍ + c?ẋ + k?x = p?(t)
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Final Remarks on Generalised SDOF Systems

From the previous comments, it should be apparent that
everything we have seen regarding the behaviour and the
integration of the equation of motion of proper SDOF
systems applies to rigid body assemblages (we will see that
it applies also to SDOF models of flexible systems),
provided that we have the means for determining the
generalised properties of the dynamical systems under
investigation.

SbS methods
PVD

Giacomo Boffi

Introductory
Remarks

Assemblage of
Rigid Bodies

Assemblages of Rigid Bodies

I planar, or bidimensional, rigid bodies, constrained to
move in a plane,

I the flexibility is concentrated in discrete elements,
springs and dampers,

I rigid bodies are connected to a fixed reference and to
each other by means of springs, dampers and smooth,
bilateral constraints (read hinges, double pendulums
and rollers),

I inertial forces are distributed forces, acting on each
material point of each rigid body, their resultant can be
described by
I a force applied to the centre of mass of the body,
proportional to acceleration vector and total mass
M =

∫
dm

I a couple, proportional to angular acceleration and the
moment of inertia J of the rigid body,
J =

∫
(x2 + y2)dm.
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Rigid Bar

x

G

L

Unit mass m̄ = constant,

Length L,

Centre of Mass xG = L/2,

Total Mass m = m̄L,

Moment of Inertia J = m
L2

12
= m̄

L3

12
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Rigid Rectangle

G

y

a

b

Unit mass γ = constant,

Sides a, b

Centre of Mass xG = a/2, yG = b/2

Total Mass m = γab,

Moment of Inertia J = m
a2 + b2

12
= γ

a3b + ab3

12
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Rigid Triangle

For a right triangle.

y

G

a

b

Unit mass γ = constant,

Sides a, b

Centre of Mass xG = a/3, yG = b/3

Total Mass m = γab/2,

Moment of Inertia J = m
a2 + b2

18
= γ

a3b + ab3

36
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Rigid Oval

When a = b = R the oval is a circle.

x

y

b
b

a a

Unit mass γ = constant,

Axes a, b

Centre of Mass xG = yG = 0

Total Mass m = γ π ab, ( = γ πR2)

Moment of Inertia J = m
a2 + b2

4
, ( = m

R2

2
)
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trabacolo1

c k c k2 211

N

m  ,  J2 2

p(x,t) = P x/a f(t)

a 2 a a a a a

The mass of the left bar is m1 = m̄ 4a and its moment of
inertia is J1 = m1

(4a)2
12 = 4a2m1/3.

The maximum value of the external load is
Pmax = P 4a/a = 4P and the resultant of triangular load is
R = 4P × 4a/2 = 8Pa
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Forces and Virtual Displacements

c1Ż
4

m1Z̈
2

3k1Z
4 c2Ż 2m2Z̈

3
kZ
3

NZ (t)

J2Z̈
3a

8Pa f (t)
J1Z̈
4a

δZ
4

δZ
2 3 δZ4 δZ 2 δZ3

δZ
3

δu

δθ2 = δZ/(3a)δθ1 = δZ/(4a)

u = 7a−4a cos θ1−3a cos θ2, δu = 4a sin θ1δθ1+3a sin θ2δθ2

δθ1 = δZ/(4a), δθ2 = δZ/(3a)

sin θ1 ≈ Z/(4a), sin θ2 ≈ Z/(3a)

δu =
( 1
4a + 1

3a

)
Z δZ = 7

12aZ δZ
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Principle of Virtual Displacements

c1Ż
4

m1Z̈
2

3k1Z
4 c2Ż 2m2Z̈

3
kZ
3

NZ (t)

J2Z̈
3a

8Pa f (t)
J1Z̈
4a

δZ
4

δZ
2 3 δZ4 δZ 2 δZ3

δZ
3

δu

δθ2 = δZ/(3a)δθ1 = δZ/(4a)

The virtual work of the InertialDampingElasticExternal
forces:

δWI = −m1
Z̈
2
δZ
2
− J1

Z̈
4a
δZ
4a
−m2

2Z̈
3

2δZ
3
− J2

Z̈
3a
δZ
3a

= −
(

m1

4
+ 4

m2

9
+

J1
16a2

+
J2
9a2

)
Z̈ δZ

δWD = −c1
Ż
4
δZ
4
−−c2Z δZ = − (c2 + c1/16) Ż δZ

δWS = −k1
3Z
4

3δZ
4
− k2

Z
3
δZ
3

= −
(
9k1
16

+
k2
9

)
Z δZ

δWExt = 8Pa f (t)
2δZ
3

+ N
7
12a

Z δZ

_
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Principle of Virtual Displacements

For a rigid body in condition of equilibrium the total virtual
work must be equal to zero

δWI + δWD + δWS + δWExt = 0

Substituting our expressions of the virtual work
contributions and simplifying δZ , the equation of
equilibrium is

(
m1

4
+ 4

m2

9
+

J1
16a2

+
J2
9a2

)
Z̈+

+ (c2 + c1/16) Ż +

(
9k1
16

+
k2
9

)
Z =

8Pa f (t)
2
3

+ N
7
12a

Z

SbS methods
PVD

Giacomo Boffi

Introductory
Remarks

Assemblage of
Rigid Bodies

Principle of Virtual Displacements

Collecting Z and its time derivatives give us

m?Z̈ + c?Ż + k?Z = p?f (t)

introducing the so called generalised properties, in our
example it is

m? =
1
4
m1 +

4
9
9m2 +

1
16a2

J1 +
1
9a2

J2,

c? =
1
16

c1 + c2,

k? =
9
16

k1 +
1
9
k2 −

7
12a

N,

p? =
16
3

Pa.

It is worth writing down
the expression of k?: k? =

9k1
16

+
k2
9
− 7
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