
example MDOF

April 23, 2015

In [1]: %matplotlib inline

import matplotlib.pyplot as pl

from scipy import *

from scipy.linalg import eigh

In [2]: %config InlineBackend.figure_format = ’svg’

import matplotlib as mp

mp.rcParams[’figure.figsize’] = 9,4

Our system is a two DOF system, its structural matrices are

M = m

[
2 0
0 1

]
, K = k

[
3 −2
−2 2

]
.

The system is harmonically loaded,

p(t) = po

{
0
1

}
sinωt = po r sinωt,

where we have introduced an adimensional load shape vector.
A particular integral can be xss = ξ sinωt, substituting in the equation of motion and simplifying the

time dependency

(kK − ω2mM) ξ = po r.

Introducing the unit frequency, defined in terms of unit stiffness and unit mass, ωo =
√

k
m , with ω = 2ωo,

dividing both members by k we have

(K − 4M) ξ =
po
k
r = ∆ r.

Substituting the numerical values, solving for ξ and substituting in xs

xs(t) = ∆
1

6

{
+2
−5

}
sinωt.

If our systems starts from rest conditions, the steady state solution has a non zero initial velocity, so we
have to superpose a homogeneous solution to get the respect of all initial conditions.

To find the homogeneous solution we use separation of variables, x = ψ sinωt, substituting x(t) in the
equation of free vibrations and simplifying the time dependency we have the following homogeneous equation

(K − ω2M)ψ = 0.

The non trivial solutions can be found using the library function eigh, that computes an 1-D array of
eigenvalues and a 2-D array of (mass-normalized) eigenvectors.

1

In [3]: K = matrix(’3 -2;-2 2’) ; M = matrix(’2 0;0 1’)

evals, evecs = eigh(K,M)

print evals

print

print evecs

[0.31385934 3.18614066]

[[-0.54177432 -0.45440135]

[-0.64262055 0.76618459]]

Note that both evals and evecs are adimensional, the dimensional eigenvalues can be obtained multi-
plying evals by ω2

o .
While we are at it, we compute also the adimensional frequencies, ωi/ωo, and the inverses of the adimen-

sional frequencies.

In [4]: freqs = sqrt(evals)

invfreq = 1/freqs

print freqs

print invfreq

[0.5602315 1.78497638]

[1.78497638 0.5602315]

The first eigenvector has both components negative, I don’t like that. . .

In [5]: evecs[:,0] *= -1

Now, the load vector divided po and the excitation frequency, ωf/ωo:

In [6]: p = matrix(’0;1’)

wf = 2.0

First, we compute ξ/∆, then its components in the modal coordinates. . .

In [7]: xi = (K-wf*wf*M).I*p

print xi

qs = evecs.T*M*xi

print qs

[[0.33333333]

[-0.83333333]]

[[-0.17433425]

[-0.94142139]]

The steady state response, in modal coordinates, is

xs(t) = ∆ (ψ1qs,1 +ψ2qs,2) sinωt

and for initial rest conditions we have

qi(t) = ∆

(
sinωt− ω

ωi
sinωit

)
qs,i.

In code:

In [8]: def q1(t): return qs[0,0]*(sin(wf*t) - wf/freqs[0]*sin(freqs[0]*t))

def q2(t): return qs[1,0]*(sin(wf*t) - wf/freqs[1]*sin(freqs[1]*t))

2

It’s high time to represent our results, here the response is plotted in terms of adimensional modal
coordinates vs adimensional time.

It is worth noting that the second frequency is rather close to the frequency of the harmonmic loading,
and this is clearly reflected in the beating behaviour of the second modal coordinate.

In [12]: t = linspace(0,50,1001)

pl.xlabel(r’ω_0t’,size=14)

pl.ylabel(r’Normalised Modal Displacements’)

pl.plot(t,q1(t), label=r’q_1/Δ’)

pl.plot(t,q2(t), label=r’q_2/Δ’)

pl.legend(framealpha=0.4,loc=0) ; pl.grid()

Now, we define quite naively the response in natural coordinates and proceed to plotting in a manner
similar to our previous graph.

In [13]: def x1(t): return evecs[0,0]*q1(t)+evecs[0,1]*q2(t)

def x2(t): return evecs[1,0]*q1(t)+evecs[1,1]*q2(t)

pl.xlabel(r’ω_0t’,size=14)

pl.ylabel(r’Normalised Modal Displacements’)

pl.plot(t,x1(t), label=r’x_1/Δ’)

pl.plot(t,x2(t), label=r’x_2/Δ’)

pl.legend(framealpha=0.6,loc=0);

pl.grid();

3

In []:

4

