Structural Matrices in MDOF Systems

Giacomo Boffi

Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano

May 12, 2015

Structural Matrices

Giacomo Boffi

Introductory Remarks

otructural Matrices

Evaluation of Structural Matrices

Outline

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

Orthogonality Relationships

Additional Orthogonality Relationships

Evaluation of Structural Matrices

Flexibility Matrix

Example

Stiffness Matrix

Mass Matrix

Damping Matrix

Geometric Stiffness

External Loading

Choice of Property Formulation

Static Condensation

Example

Introductory Remarks

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

valuation of tructural Matrices

Choice of Property Formulation

Today we will study the properties of structural matrices, that is the operators that relate the vector of system coordinates \mathbf{x} and its time derivatives $\dot{\mathbf{x}}$ and $\ddot{\mathbf{x}}$ to the forces acting on the system nodes, \mathbf{f}_{S} , \mathbf{f}_{D} and \mathbf{f}_{I} , respectively.

Introductory Remarks

Structural Matrices

valuation of tructural Natrices

Choice of Property Formulation

Today we will study the properties of structural matrices, that is the operators that relate the vector of system coordinates \mathbf{x} and its time derivatives $\dot{\mathbf{x}}$ and $\ddot{\mathbf{x}}$ to the forces acting on the system nodes, \mathbf{f}_{S} , \mathbf{f}_{D} and \mathbf{f}_{I} , respectively.

In the end, we will see again the solution of a MDOF problem by superposition, and in general today we will revisit many of the subjects of our previous class, but you know

Introductory Remarks

Structural Matrices

itructural Matrices

Choice of Property Formulation

Today we will study the properties of structural matrices, that is the operators that relate the vector of system coordinates \mathbf{x} and its time derivatives $\dot{\mathbf{x}}$ and $\ddot{\mathbf{x}}$ to the forces acting on the system nodes, \mathbf{f}_{S} , \mathbf{f}_{D} and \mathbf{f}_{I} , respectively.

In the end, we will see again the solution of a *MDOF* problem by superposition, and in general today we will revisit many of the subjects of our previous class, but you know that a bit of reiteration is really good for developing minds.

Structural Matrices

Orthogonality Relationship: Additional Orthogonality Relationships

Structural Matrices

Choice of Property Formulation

We already met the mass and the stiffness matrix, \mathbf{M} and \mathbf{K} , and tangentially we introduced also the dampig matrix \mathbf{C} . We have seen that these matrices express the linear relation that holds between the vector of system coordinates \mathbf{x} and its time derivatives $\dot{\mathbf{x}}$ and $\ddot{\mathbf{x}}$ to the forces acting on the system nodes, \mathbf{f}_{S} , \mathbf{f}_{D} and \mathbf{f}_{I} , elastic, damping and inertial force vectors.

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{C}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{p}(t)$$
$$\mathbf{f}_1 + \mathbf{f}_D + \mathbf{f}_S = \mathbf{p}(t)$$

Also, we know that \mathbf{M} and \mathbf{K} are symmetric and definite positive, and that it is possible to uncouple the equation of motion expressing the system coordinates in terms of the eigenvectors, $\mathbf{x}(t) = \sum q_i \boldsymbol{\psi}_i$, where the q_i are the modal coordinates and the eigenvectors ψ_i are the non-trivial solutions to the equation of free vibrations,

$$\left(\mathbf{K} - \omega^2 \mathbf{M}\right) \boldsymbol{\psi} = \mathbf{0}$$

Free Vibrations

Structural Matrices

From the homogeneous, undamped problem

$$M\,\ddot{x} + K\,x = 0$$

introducing separation of variables

$$\mathbf{x}(t) = \boldsymbol{\psi} \left(A \sin \omega t + B \cos \omega t \right)$$

we wrote the homogeneous linear system

$$(\mathbf{K} - \omega^2 \mathbf{M}) \, \boldsymbol{\psi} = \mathbf{0}$$

whose non-trivial solutions ψ_i for ω_i^2 such that $\|\mathbf{K} - \omega_i^2 \mathbf{M}\| = 0$ are the eigenvectors. It was demonstrated that, for each pair of distint eigenvalues ω_r^2 and ω_s^2 , the corresponding eigenvectors obey the ortogonality condition,

$$\boldsymbol{\psi}_s^{\mathsf{T}} \mathbf{M} \, \boldsymbol{\psi}_r = \delta_{rs} M_r, \quad \boldsymbol{\psi}_s^{\mathsf{T}} \mathbf{K} \, \boldsymbol{\psi}_r = \delta_{rs} \omega_r^2 M_r.$$

Giacomo Boffi

ntroductory Remarks

Structural Matrices

Orthogonality Relationships Additional Orthogonality Relationships

tructural Matrices

Structural Matrices

Giacomo Boffi

From

$$\mathbf{K}\,\boldsymbol{\psi}_s = \omega_s^2 \mathbf{M}\,\boldsymbol{\psi}_s$$

premultiplying by $\boldsymbol{\psi}_r^T \mathbf{K} \mathbf{M}^{-1}$ we have

$$\boldsymbol{\psi}_r^{\top} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \, \boldsymbol{\psi}_{\scriptscriptstyle S} = \omega_{\scriptscriptstyle S}^2 \boldsymbol{\psi}_r^{\top} \mathbf{K} \, \boldsymbol{\psi}_{\scriptscriptstyle S}$$

ntroductory Remarks

Matrices

Additional Orthogonality Relationships

Evaluation of Structural Matrices

Structural Matrices

Giacomo Boffi

From

$$\mathbf{K}\,\boldsymbol{\psi}_s = \omega_s^2 \mathbf{M}\,\boldsymbol{\psi}_s$$

premultiplying by $\boldsymbol{\psi}_r^T \mathbf{K} \mathbf{M}^{-1}$ we have

$$\boldsymbol{\psi}_r^T \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \, \boldsymbol{\psi}_s = \boldsymbol{\omega}_s^2 \boldsymbol{\psi}_r^T \mathbf{K} \, \boldsymbol{\psi}_s = \delta_{rs} \boldsymbol{\omega}_r^4 M_r,$$

Introductory Remarks

Matrices

Orthogonality Relationships Additional Orthogonality

Relationships

Evaluation of

Matrices
Choice of Property

Structural Matrices

Giacomo Boffi

From

$$\mathbf{K}\,\boldsymbol{\psi}_{s}=\omega_{s}^{2}\mathbf{M}\,\boldsymbol{\psi}_{s}$$

premultiplying by $\psi_r^T \mathbf{K} \mathbf{M}^{-1}$ we have

$$\boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \, \boldsymbol{\psi}_s = \omega_s^2 \boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{K} \, \boldsymbol{\psi}_s = \delta_{rs} \omega_r^4 M_r$$
,

premultiplying the first equation by $\boldsymbol{\psi}_r^T \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \mathbf{M}^{-1}$

$$\boldsymbol{\psi}_r^{\mathsf{T}} \mathsf{K} \mathsf{M}^{-1} \mathsf{K} \mathsf{M}^{-1} \mathsf{K} \, \boldsymbol{\psi}_s = \omega_s^2 \boldsymbol{\psi}_r^{\mathsf{T}} \mathsf{K} \mathsf{M}^{-1} \mathsf{K} \, \boldsymbol{\psi}_s =$$

ntroductory Remarks

Matrices

Additional Orthogonality Relationships

Evaluation of Structural Matrices

Structural Matrices

Giacomo Boffi

From

$$\mathbf{K}\,\boldsymbol{\psi}_s = \omega_s^2 \mathbf{M}\,\boldsymbol{\psi}_s$$

premultiplying by $\boldsymbol{\psi}_r^T \mathbf{K} \mathbf{M}^{-1}$ we have

$$\boldsymbol{\psi}_r^{\top}\mathbf{K}\mathbf{M}^{-1}\mathbf{K}\;\boldsymbol{\psi}_{\scriptscriptstyle S}=\omega_{\scriptscriptstyle S}^2\boldsymbol{\psi}_r^{\top}\mathbf{K}\;\boldsymbol{\psi}_{\scriptscriptstyle S}=\delta_{\scriptscriptstyle \mathit{PS}}\omega_r^4M_r,$$

premultiplying the first equation by $\boldsymbol{\psi}_r^T \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \mathbf{M}^{-1}$

$$\boldsymbol{\psi}_r^{\top} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \ \boldsymbol{\psi}_s = \boldsymbol{\omega}_s^2 \boldsymbol{\psi}_r^{\top} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \ \boldsymbol{\psi}_s = \delta_{rs} \boldsymbol{\omega}_r^6 M_r$$

ntroductory Remarks

Matrices

Additional Orthogonality Relationships

Evaluation of Structural Matrices

Structural Matrices

Giacomo Boffi

From

$$\mathbf{K}\, \boldsymbol{\psi}_s = \omega_s^2 \mathbf{M}\, \boldsymbol{\psi}_s$$

premultiplying by $\boldsymbol{\psi}_r^T \mathbf{K} \mathbf{M}^{-1}$ we have

$$\boldsymbol{\psi}_r^{\top}\mathbf{K}\mathbf{M}^{-1}\mathbf{K}\;\boldsymbol{\psi}_s=\omega_s^2\boldsymbol{\psi}_r^{\top}\mathbf{K}\;\boldsymbol{\psi}_s=\delta_{rs}\omega_r^4M_r,$$

premultiplying the first equation by $\boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \mathbf{M}^{-1}$

$$\boldsymbol{\psi}_r^{T}\mathbf{K}\mathbf{M}^{-1}\mathbf{K}\mathbf{M}^{-1}\mathbf{K}\,\boldsymbol{\psi}_s = \omega_s^2\boldsymbol{\psi}_r^{T}\mathbf{K}\mathbf{M}^{-1}\mathbf{K}\,\boldsymbol{\psi}_s = \delta_{rs}\omega_r^6M_r$$

and, generalizing,

$$\boldsymbol{\psi}_{r}^{T} \left(\mathbf{K} \mathbf{M}^{-1} \right)^{b} \mathbf{K} \, \boldsymbol{\psi}_{s} = \delta_{rs} \left(\omega_{r}^{2} \right)^{b+1} M_{r}.$$

ntroductory Remarks

Matrices

Orthogonality Relationship Additional Orthogonality Relationships

Evaluation of Structural Matrices

Structural Matrices

From

$$\mathbf{M}\,\boldsymbol{\psi}_s = \omega_s^{-2}\mathbf{K}\,\boldsymbol{\psi}_s$$

premultiplying by $\boldsymbol{\psi}_r^T \mathbf{M} \mathbf{K}^{-1}$ we have

$$\boldsymbol{\psi}_r^{\top} \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \, \boldsymbol{\psi}_s = \boldsymbol{\omega}_s^{-2} \boldsymbol{\psi}_r^{\top} \mathbf{M} \, \boldsymbol{\psi}_s =$$

Giacomo Boffi

Introductory Remarks

Matrices

Additional Orthogonality
Relationships

Evaluation of Structural Matrices

Structural Matrices

From

$$\mathbf{M}\,\boldsymbol{\psi}_s = \omega_s^{-2}\mathbf{K}\,\boldsymbol{\psi}_s$$

premultiplying by $\psi_r^T \mathbf{M} \mathbf{K}^{-1}$ we have

$$\boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \, \boldsymbol{\psi}_s = \omega_s^{-2} \boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{M} \, \boldsymbol{\psi}_s = \delta_{rs} \frac{M_s}{\omega_s^2}$$

Giacomo Boffi

Introductory Remarks

Structural Matrices

Orthogonality Relationship
Additional Orthogonality
Relationships

Evaluation of Structural Matrices

Structural Matrices

From

$$\mathbf{M}\,\boldsymbol{\psi}_s = \omega_s^{-2}\mathbf{K}\,\boldsymbol{\psi}_s$$

premultiplying by $\boldsymbol{\psi}_r^T \mathbf{M} \mathbf{K}^{-1}$ we have

$$\boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \, \boldsymbol{\psi}_s = \omega_s^{-2} \boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{M} \, \boldsymbol{\psi}_s = \delta_{rs} \frac{M_s}{\omega_s^2}$$

premultiplying the first eq. by $\psi_r^T (\mathbf{M}\mathbf{K}^{-1})^2$ we have

$$\boldsymbol{\psi}_r^T \left(\mathbf{M} \mathbf{K}^{-1} \right)^2 \mathbf{M} \, \boldsymbol{\psi}_s = \omega_s^{-2} \boldsymbol{\psi}_r^T \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \, \boldsymbol{\psi}_s =$$

Giacomo Boffi

Introductory Remarks

Structural Matrices

Relationships

Orthogonality Relationship Additional Orthogonality

Evaluation of Structural

Choice of Property

Structural Matrices

From

$$\mathbf{M}\,\boldsymbol{\psi}_s = \omega_s^{-2}\mathbf{K}\,\boldsymbol{\psi}_s$$

premultiplying by $\boldsymbol{\psi}_r^T \mathbf{M} \mathbf{K}^{-1}$ we have

$$\boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \, \boldsymbol{\psi}_s = \omega_s^{-2} \boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{M} \, \boldsymbol{\psi}_s = \delta_{rs} \frac{M_s}{\omega_s^2}$$

premultiplying the first eq. by $\psi_r^T (\mathbf{M}\mathbf{K}^{-1})^2$ we have

$$\boldsymbol{\psi}_r^T \left(\mathbf{M} \mathbf{K}^{-1} \right)^2 \mathbf{M} \, \boldsymbol{\psi}_s = \omega_s^{-2} \boldsymbol{\psi}_r^T \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \, \boldsymbol{\psi}_s = \delta_{rs} \frac{M_s}{\omega_s^4}$$

Giacomo Boffi

Introductory Remarks

Structural Matrices

Orthogonality Relationship
Additional Orthogonality
Relationships

Evaluation of Structural Matrices

Structural Matrices

Giacomo Boffi

From

$$\mathbf{M}\,\boldsymbol{\psi}_s = \omega_s^{-2}\mathbf{K}\,\boldsymbol{\psi}_s$$

premultiplying by $\boldsymbol{\psi}_r^T \mathbf{M} \mathbf{K}^{-1}$ we have

$$\boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \, \boldsymbol{\psi}_s = \omega_s^{-2} \boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{M} \, \boldsymbol{\psi}_s = \delta_{rs} \frac{M_s}{\omega_s^2}$$

premultiplying the first eq. by $\psi_r^T (\mathbf{M}\mathbf{K}^{-1})^2$ we have

$$\boldsymbol{\psi}_r^T \left(\mathbf{M} \mathbf{K}^{-1} \right)^2 \mathbf{M} \, \boldsymbol{\psi}_s = \boldsymbol{\omega}_s^{-2} \boldsymbol{\psi}_r^T \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \, \boldsymbol{\psi}_s = \delta_{rs} \frac{M_s}{\omega_s^4}$$

and, generalizing,

$$\boldsymbol{\psi}_r^{\mathsf{T}} \left(\mathsf{M} \mathsf{K}^{-1} \right)^b \mathsf{M} \, \boldsymbol{\psi}_{\mathsf{S}} = \delta_{r\mathsf{S}} \frac{M_{\mathsf{S}}}{\omega_{\mathsf{S}}^{2b}}$$

Introductory Remarks

Structural Matrices

Orthogonality Relationship

Additional Orthogonality
Relationships

Evaluation of Structural Matrices

Structural Matrices

Defining $X_{rs}(k) = \boldsymbol{\psi}_r^T \mathbf{M} \left(\mathbf{M}^{-1} \mathbf{K} \right)^k \boldsymbol{\psi}_s$ we have

$$\begin{cases} X_{rs}(0) = \boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{M} \boldsymbol{\psi}_s &= \delta_{rs} \left(\omega_s^2\right)^0 M_s \\ X_{rs}(1) = \boldsymbol{\psi}_r^{\mathsf{T}} \mathbf{K} \boldsymbol{\psi}_s &= \delta_{rs} \left(\omega_s^2\right)^1 M_s \\ X_{rs}(2) = \boldsymbol{\psi}_r^{\mathsf{T}} \left(\mathbf{K} \mathbf{M}^{-1}\right)^1 \mathbf{K} \boldsymbol{\psi}_s &= \delta_{rs} \left(\omega_s^2\right)^2 M_s \\ \dots \\ X_{rs}(n) = \boldsymbol{\psi}_r^{\mathsf{T}} \left(\mathbf{K} \mathbf{M}^{-1}\right)^{n-1} \mathbf{K} \boldsymbol{\psi}_s &= \delta_{rs} \left(\omega_s^2\right)^n M_s \end{cases}$$

Observing that $(\mathbf{M}^{-1}\mathbf{K})^{-1} = (\mathbf{K}^{-1}\mathbf{M})^{1}$

$$\begin{cases} X_{rs}(-1) = \boldsymbol{\psi}_r^T \left(\mathbf{M} \mathbf{K}^{-1} \right)^1 \mathbf{M} \, \boldsymbol{\psi}_s &= \delta_{rs} \left(\omega_s^2 \right)^{-1} M_s \\ \dots \\ X_{rs}(-n) = \boldsymbol{\psi}_r^T \left(\mathbf{M} \mathbf{K}^{-1} \right)^n \mathbf{M} \, \boldsymbol{\psi}_s &= \delta_{rs} \left(\omega_s^2 \right)^{-n} M_s \end{cases}$$

finally

$$X_{rs}(k) = \delta_{rs}\omega_s^{2k}M_s$$
 for $k = -\infty, ..., \infty$.

Giacomo Boffi

ntroductory Remarks

tructural

Orthogonality Relationships Additional Orthogonality

Relationships

Evaluation of Structural

Choice of Property

Formulation

Flexibility

Structural Matrices

Giacomo Boffi

ntroductory Remarks

Matrices

Evaluation of Structural Matrices

Flexibility Matrix Example

Strain Energy

symmetry Direct Assembl

ass Matrix

iscussion

imping Matrix

Seometric Stiffness External Loading

Choice of Property Formulation

Given a system whose state is determined by the generalized displacements x_j of a set of nodes, we define the flexibility f_{jk} as the deflection, in direction of x_j , due to the application of a unit force in correspondance of the displacement x_k . The matrix $\mathbf{F} = \begin{bmatrix} f_{jk} \end{bmatrix}$ is the *flexibility matrix*.

Structural Matrices

evaluation of Structural Matrices

Flexibility Matrix Example

Strain Energy

ymmetry

xample

ass Matrix

scussion

mping Matrix

Example

xternal Loading

Choice of Property Formulation

Given a system whose state is determined by the generalized displacements x_j of a set of nodes, we define the flexibility f_{jk} as the deflection, in direction of x_j , due to the application of a unit force in correspondance of the displacement x_k . The matrix $\mathbf{F} = \begin{bmatrix} f_{jk} \end{bmatrix}$ is the *flexibility matrix*.

In our context, the degrees of freedom are associated with external loads and/or inertial forces.

Given a system whose state is determined by the generalized displacements x_i of a set of nodes, we define the flexibility f_{ik} as the deflection, in direction of x_i , due to the application of a unit force in correspondance of the displacement x_k . The matrix $\mathbf{F} = [f_{ik}]$ is the *flexibility* matrix.

In our context, the degrees of freedom are associated with external loads and/or inertial forces.

Given a load vector $\mathbf{p} = \{p_k\}$ (of course the load components act in correspondence of the degrees of freedom), the individual displacement x_i is

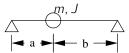
$$x_j = \sum f_{jk} p_k$$

or, in vector notation.

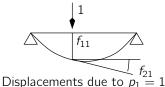
$$x = Fp$$

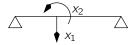
Giacomo Boffi

Example

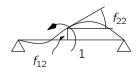


The dynamical system





The degrees of freedom



and due to $p_2 = 1$.

Example

Each node shall be in equilibrium under the action of the external forces and the elastic forces, hence taking into accounts all the nodes, all the external forces and all the elastic forces it is possible to write the vector equation of equilibrium

$$\mathbf{p} = \mathbf{f}_{S}$$

and, substituting in the previos vector expression of the displacements

$$\mathbf{x} = \mathbf{F} \, \mathbf{f}_S$$

Each node shall be in equilibrium under the action of the external forces and the elastic forces, hence taking into accounts all the nodes, all the external forces and all the elastic forces it is possible to write the vector equation of equilibrium

$$\mathbf{p} = \mathbf{f}_{S}$$

and, substituting in the previos vector expression of the displacements

$$\mathbf{x} = \mathbf{F} \mathbf{f}_{\mathsf{S}}$$

Pre=multiplying by \mathbf{F}^{-1} ,

$$\label{eq:final_fit} \textbf{F}^{-1}\textbf{x} = \textbf{F}^{-1}\textbf{F}\,\textbf{f}_S = \textbf{f}_S.$$

ntroductory Remarks

Structural Matrices

> valuation of tructural Natrices

Example

ifficana Matain

Strain Energy

Symmetry

Direct Assemblage

Mass Matrix

Consistent Mass Ma

Discussion Damping Matrix

Damping Matrix

Geometric Stiffness

Choice of Property

The *stiffness matrix* \mathbf{K} can be simply defined as the inverse of the flexibility matrix \mathbf{F} ,

$$K = F^{-1}$$
.

Alternatively the single coefficient k_{ij} can be defined as the external force (equal and opposite to the corresponding elastic force) applied to the DOF number i that gives place to a displacement vector $\mathbf{x}^{(j)} = \left\{x_n\right\} = \left\{\delta_{nj}\right\}$, where all the components are equal to zero, except for $x_j^{(j)} = 1$.

$$\sum_{n} f_{in} k_{nj} = \mathbf{F} \mathbf{k}_{j} = \delta_{ij}$$

where \mathbf{k}_s is the vector containing the coefficients k_{rs} .

ntroductory Remarks

Structural Matrices

Evaluation of Structural Matrices

xample

Stiffness Matrix

Stiffness Matrix

Symmetry
Direct Assemblage

Direct Assemblage Example

Mass Matrix Consistent Mass M

Discussion

Damping Matrix

Example

xternal Loading

Giacomo Boffi

Stiffness Matrix

Collecting all the $\mathbf{x}^{(j)}$ in a matrix \mathbf{X} , it is $\mathbf{X} = \mathbf{I}$ and we have, writing all the equations at once,

$$\mathbf{X} = \mathbf{I} = \mathbf{F} \left[k_{ij} \right], \Rightarrow \left[k_{ij} \right] = \mathbf{K} = \mathbf{F}^{-1}.$$

Finally,

$$\boldsymbol{p} = \boldsymbol{f}_S = \boldsymbol{K} \, \boldsymbol{x}.$$

Strain Energy

The elastic strain energy V can be written in terms of displacements and external forces,

$$V = \frac{1}{2} \mathbf{p}^{T} \mathbf{x} = \frac{1}{2} \begin{cases} \mathbf{p}^{T} \underbrace{\mathbf{F} \mathbf{p}}_{\mathbf{x}}, \\ \mathbf{x}^{T} \mathbf{K} \mathbf{x}. \end{cases}$$

Because the elastic strain energy of a stable system is always greater than zero, **K** is a positive definite matrix.

Strain Energy

The elastic strain energy V can be written in terms of displacements and external forces,

$$V = \frac{1}{2} \mathbf{p}^T \mathbf{x} = \frac{1}{2} \begin{cases} \mathbf{p}^T \mathbf{F} \mathbf{p}, \\ \mathbf{x}^T \mathbf{K}, \\ \mathbf{p}^T \end{cases}$$

Because the elastic strain energy of a stable system is always greater than zero, **K** is a positive definite matrix. On the other hand, for an unstable system, think of a compressed beam, there are displacement patterns that are associated to zero strain energy.

Giacomo Boffi

Introductory Remarks

Structural Matrices

> Evaluation of Structural Matrices

Example Example

Stiffness Matrix

Symmetry

irect Assemblage

Example

lass Matrix

Discussion

Damping Matrix

Example

External Loading

Choice of Property Formulation

When two sets of loads, \mathbf{p}^A and \mathbf{p}^B , are applied one after the other to an elastic system; the work done is

$$V_{AB} = \frac{1}{2} \mathbf{p}^{AT} \mathbf{x}^{A} + \mathbf{p}^{AT} \mathbf{x}^{B} + \frac{1}{2} \mathbf{p}^{BT} \mathbf{x}^{B}.$$

When two sets of loads, \mathbf{p}^A and \mathbf{p}^B , are applied one after the other to an elastic system; the work done is

$$V_{AB} = \frac{1}{2} \mathbf{p}^{AT} \mathbf{x}^{A} + \mathbf{p}^{AT} \mathbf{x}^{B} + \frac{1}{2} \mathbf{p}^{BT} \mathbf{x}^{B}.$$

If we revert the order of application the work is

$$V_{BA} = \frac{1}{2} \mathbf{p}^{BT} \mathbf{x}^{B} + \mathbf{p}^{BT} \mathbf{x}^{A} + \frac{1}{2} \mathbf{p}^{AT} \mathbf{x}^{A}.$$

Symmetry

When two sets of loads, \mathbf{p}^A and \mathbf{p}^B , are applied one after the other to an elastic system; the work done is

$$V_{AB} = \frac{1}{2} \mathbf{p}^{AT} \mathbf{x}^{A} + \mathbf{p}^{AT} \mathbf{x}^{B} + \frac{1}{2} \mathbf{p}^{BT} \mathbf{x}^{B}.$$

If we revert the order of application the work is

$$V_{BA} = \frac{1}{2} \mathbf{p}^{BT} \mathbf{x}^{B} + \mathbf{p}^{BT} \mathbf{x}^{A} + \frac{1}{2} \mathbf{p}^{AT} \mathbf{x}^{A}.$$

The total work being independent of the order of loading,

$$\mathbf{p}^{AT}\mathbf{x}^{B} = \mathbf{p}^{BT}\mathbf{x}^{A}.$$

ntroductory Remarks

Structural Matrices

> valuation of tructural Matrices

Example

Stiffness Matrix

Symmetry

Direct Assemblage

Example

viass Matrix Consistent Mass Matr

Discussion

Damning Matrix

Damping Matrix

Example

ometric Stiffness

Choice of Property

Symmetry, 2

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structura Matrices

Structural Matrices

Example

Stiffness Matrix

Symmetry

Direct Assembl

Example Mass Matrix

Aass Matrix Consistent Masi

Discussion amning Matrix

Damping Matrix

External Loading

Choice of Property

Expressing the displacements in terms of F,

$$\mathbf{p}^{A^T} \mathbf{F} \mathbf{p}^B = \mathbf{p}^{B^T} \mathbf{F} \mathbf{p}^A$$

Expressing the displacements in terms of F,

$$\mathbf{p}^{AT}\mathbf{F}\,\mathbf{p}^{B}=\mathbf{p}^{BT}\mathbf{F}\mathbf{p}^{A},$$

both terms are scalars so we can write

$$\mathbf{p}^{AT}\mathbf{F}\mathbf{p}^{B} = (\mathbf{p}^{BT}\mathbf{F}\mathbf{p}^{A})^{T} = \mathbf{p}^{AT}\mathbf{F}^{T}\mathbf{p}^{B}.$$

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

cample

Stiffness Matrix

Symmetry

rect Assemblage

ass Matrix

Discussion Damping Matrix

amping Matrix Example

eometric Stiffness

Expressing the displacements in terms of \mathbf{F} ,

$$\mathbf{p}^{AT}\mathbf{F}\,\mathbf{p}^{B}=\mathbf{p}^{BT}\mathbf{F}\mathbf{p}^{A},$$

both terms are scalars so we can write

$$\mathbf{p}^{AT}\mathbf{F}\mathbf{p}^{B} = (\mathbf{p}^{BT}\mathbf{F}\mathbf{p}^{A})^{T} = \mathbf{p}^{AT}\mathbf{F}^{T}\mathbf{p}^{B}.$$

Because this equation holds for every \mathbf{p} , we conclude that

$$\mathbf{F} = \mathbf{F}^{T}$$
,

and, as the inverse of a symmetric matrix is symmetric,

$$\mathbf{K} = \mathbf{K}^T$$
.

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Example

Stiffness Matrix

Symmetry

Direct Assemblage

Example

Consistent Mass Mat

Damping Matrix

Example

eometric Stiffness xternal Loading

A practical consideration

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

> Evaluation of Structural Matrices

xample

Strain Energy

Direct Assemblage

xample

lass Matrix

Discussion

amping Matrix

Example

xternal Loading

Choice of Property Formulation

For the kind of *structures* we mostly deal with in our examples, problems, exercises and assignments, that is *simple structures*, it is usually convenient to compute the flexibility matrix applying the Principle of Virtual Displacements (we have seen an example last week) and inverting the flexibility to obtain the stiffness matrix,

 $\mathbf{K} = \mathbf{F}^{-1}$

Direct Assemblage

A practical consideration

For the kind of *structures* we mostly deal with in our examples, problems, exercises and assignments, that is simple structures, it is usually convenient to compute the flexibility matrix applying the Principle of Virtual Displacements (we have seen an example last week) and inverting the flexibilty to obtain the stiffness matrix,

$$K = F^{-1}$$

For general structures, large and/or complex, the PVD approach cannot work in practice, as the number of degrees of freedom necessary to model the structural behaviour exceed our ability to do pencil and paper computations...

Direct Assemblage

A practical consideration

For the kind of *structures* we mostly deal with in our examples, problems, exercises and assignments, that is simple structures, it is usually convenient to compute the flexibility matrix applying the Principle of Virtual Displacements (we have seen an example last week) and inverting the flexibilty to obtain the stiffness matrix,

$$\mathbf{K} = \mathbf{F}^{-1}$$

For general structures, large and/or complex, the PVD approach cannot work in practice, as the number of degrees of freedom necessary to model the structural behaviour exceed our ability to do pencil and paper computations... Different methods are required to construct the stiffness matrix for such large, complex structures.

The most common procedure to construct the matrices that describe the behaviour of a complex system is the *Finite Element Method*, or *FEM*. The

procedure can be sketched in the following terms:

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Example Example

Stiffness Matrix

Symmetry

Direct Assemblage

Example

Mass Matrix

Discussion

Damping Matrix

Example

xternal Loading

Structural Matrices

Giacomo Boffi

The most common procedure to construct the matrices that describe the behaviour of a complex system is the *Finite Element Method*, or *FEM*. The procedure can be sketched in the following terms:

the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes, Introductory Remarks

Structura Matrices

Evaluation of Structural Matrices

Flexibility Matrix Example

Strain Energy

ymmetry Direct Assemblage

Direct Assemblage

Mass Matrix

Consistent Mass

Discussion

Damping Matrix

Geometric Stiffness

External Loading

Giacomo Boffi

The most common procedure to construct the matrices that describe the behaviour of a complex system is the Finite Element Method, or FEM. The procedure can be sketched in the following terms:

- ▶ the structure is subdivided in non-overlapping portions, the *finite* elements, bounded by nodes, connected by the same nodes,
- the displacements, strains, stresses in the fe are described in terms of a linear combination of shape functions, weighted in according to the nodal displacements, element matrices are computed accordingly

Direct Assemblage

Structural Matrices

Giacomo Boffi

The most common procedure to construct the matrices that describe the behaviour of a complex system is the *Finite Element Method*, or *FEM*. The procedure can be sketched in the following terms:

- the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes,
- ▶ the displacements, strains, stresses in the *fe* are described in terms of a linear combination of shape functions, weighted in according to the nodal displacements, element matrices are computed accordingly
- ► the *element stiffness matrix*, K_{el} establishes a linear relation between an element nodal displacements and forces,

Introductory Remarks

Structura Matrices

Evaluation of Structural Matrices

Example

Stiffness Matrix

Symmetry

Direct Assemblage

xample ass Matrix

lass Matrix

iscussion

amping Matrix

Example Geometric Stiffness

external Loading

Giacomo Boffi

Introductory Remarks

Structural Matrices

Evaluation o Structural Matrices

Flexibility Matrix Example

Stiffness Matrix

Symmetry

Direct Assemblage

Example

Mass Matrix

Discussion

amping Matrix

Damping Matrix

Example leometric Stiffnes

xternal Loading

Choice of Property Formulation

The most common procedure to construct the matrices that describe the behaviour of a complex system is the *Finite Element Method*, or *FEM*. The procedure can be sketched in the following terms:

- the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes,
- ▶ the displacements, strains, stresses in the *fe* are described in terms of a linear combination of shape functions, weighted in according to the nodal displacements, element matrices are computed accordingly
- the element stiffness matrix, K_{el} establishes a linear relation between an element nodal displacements and forces.
- the state of the structure can be described in terms of a vector x of generalized nodal displacements,

Giacomo Boffi

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

lexibility Matrix xample

Stiffness Matrix

Strain Energy

Direct Assemblage

Example

Mass Matrix

Consistent Mas

Discussion

Damping Matrix

Example Segmetric Stiffness

External Loading

Choice of Property Formulation

The most common procedure to construct the matrices that describe the behaviour of a complex system is the *Finite Element Method*, or *FEM*. The procedure can be sketched in the following terms:

- the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes,
- ▶ the displacements, strains, stresses in the *fe* are described in terms of a linear combination of shape functions, weighted in according to the nodal displacements, element matrices are computed accordingly
- the element stiffness matrix, K_{el} establishes a linear relation between an element nodal displacements and forces.
- ▶ the state of the structure can be described in terms of a vector **x** of generalized *nodal displacements*.
- ▶ there is a mapping between element and structure *DOF*'s, $i_{el} \mapsto r$,

The most common procedure to construct the matrices that describe the behaviour of a complex system is the *Finite Element Method*, or *FEM*. The procedure can be sketched in the following terms:

- the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes,
- ▶ the displacements, strains, stresses in the *fe* are described in terms of a linear combination of shape functions, weighted in according to the nodal displacements, element matrices are computed accordingly
- the element stiffness matrix, K_{el} establishes a linear relation between an element nodal displacements and forces.
- the state of the structure can be described in terms of a vector x of generalized nodal displacements,
- lacktriangle there is a mapping between element and structure *DOF*'s, $i_{\rm el}\mapsto r$,
- ▶ for each *FE*, all local k_{ij} 's are contributed to the global stiffness k_{rs} 's, with $i \mapsto r$ and $j \mapsto s$, taking in due consideration differences between local and global systems of reference.

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

lexibility Matrix xample

Stiffness Matrix

Symmetry
Direct Assemblage

xample

Mass Matrix

Discussion Damping Matrix

Example

xternal Loading

The most common procedure to construct the matrices that describe the behaviour of a complex system is the *Finite Element Method*, or *FEM*. The procedure can be sketched in the following terms:

- the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes,
- ▶ the displacements, strains, stresses in the *fe* are described in terms of a linear combination of shape functions, weighted in according to the nodal displacements, element matrices are computed accordingly
- the element stiffness matrix, K_{el} establishes a linear relation between an element nodal displacements and forces.
- the state of the structure can be described in terms of a vector x of generalized nodal displacements,
- lacktriangle there is a mapping between element and structure *DOF*'s, $i_{\rm el}\mapsto r$,
- ▶ for each *FE*, all local k_{ij} 's are contributed to the global stiffness k_{rs} 's, with $i \mapsto r$ and $j \mapsto s$, taking in due consideration differences between local and global systems of reference.

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

lexibility Matrix xample

Stiffness Matrix

Symmetry
Direct Assemblage

xample

Mass Matrix

Discussion Damping Matrix

Example

xternal Loading

Giacomo Boffi

The most common procedure to construct the matrices that describe the behaviour of a complex system is the *Finite Element Method*, or *FEM*. The procedure can be sketched in the following terms:

- the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes,
- ▶ the displacements, strains, stresses in the *fe* are described in terms of a linear combination of shape functions, weighted in according to the nodal displacements, element matrices are computed accordingly
- the element stiffness matrix, K_{el} establishes a linear relation between an element nodal displacements and forces,
- the state of the structure can be described in terms of a vector x of generalized nodal displacements,
- lacktriangle there is a mapping between element and structure *DOF*'s, $i_{\rm el}\mapsto r$,
- ▶ for each *FE*, all local k_{ij} 's are contributed to the global stiffness k_{rs} 's, with $i \mapsto r$ and $j \mapsto s$, taking in due consideration differences between local and global systems of reference.

Note that in the *r*-th *global* equation of equilibrium we have internal forces caused by the nodal displacements of the *FE* that have nodes $i_{\rm el}$ such that $i_{\rm el} \mapsto r$, thus implying that global **K** is a *banded* matrix.

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

exibility Matrix

Strain Energy

Symmetry
Direct Assemblage

xample

Mass Matrix Consistent Mass M

Damping Matrix

eometric Stiffness

Consider a 2-D inextensible beam element, that has 4 *DOF*, namely two transverse end displacements x_1 , x_2 and two end rotations, x_3 , x_4 . The element stiffness is computed using 4 shape functions ϕ_i , the transverse displacement being $v(s) = \sum_i \phi_i(s) x_i$, the different ϕ_i are such all end displacements or rotation are zero, except the one corresponding to index i.

The shape functions for a beam are

$$\phi_1(s) = 1 - 3\left(\frac{s}{L}\right)^2 + 2\left(\frac{s}{L}\right)^3, \quad \phi_2(s) = 3\left(\frac{s}{L}\right)^2 - 2\left(\frac{s}{L}\right)^3,$$

$$\phi_3(s) = s\left(1 - \left(\frac{s}{L}\right)^2\right), \qquad \phi_4(s) = s\left(\left(\frac{s}{L}\right)^2 - \left(\frac{s}{L}\right)\right).$$

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Example

Strain Energy

Symmetry Direct Assemblage

Direct Assemblage

Example

Mass Matrix Consistent Mass Matr

Discussion amping Matrix

Example

eometric Stiffness sternal Loading

The element stiffness coefficients can be computed using, what else, the PVD: we compute the external virtual work done by a variation δx_i by the force due to a unit displacement x_i , that is k_{ii} ,

$$\delta W_{\rm ext} = \delta x_i k_{ij}$$
,

the virtual internal work is the work done by the variation of the curvature, $\delta x_i \phi_i''(s)$ by the bending moment associated with a unit x_j , $\phi_j''(s)EJ(s)$,

$$\delta W_{\rm int} = \int_0^L \delta x_i \phi_i''(s) \phi_j''(s) EJ(s) \, \mathrm{d}s.$$

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Example

Stiffness Matrix

Symmetry

Direct Assemblage

Example

Mass Matrix

onsistent Mass Mat Discussion

Damping Matrix

Example Seometric Stiffnes

External Loading

The equilibrium condition is the equivalence of the internal and external virtual works, so that simplifying δx_i we have

$$k_{ij} = \int_0^L \phi_i''(s)\phi_j''(s)EJ(s)\,\mathrm{d}s.$$

For EJ = const,

$$\mathbf{f}_{S} = \frac{EJ}{L^{3}} \begin{bmatrix} 12 & -12 & 6L & 6L \\ -12 & 12 & -6L & -6L \\ 6L & -6L & 4L^{2} & 2L^{2} \\ 6L & -6L & 2L^{2} & 4L^{2} \end{bmatrix} \mathbf{x}$$

ntroductory Remarks

Structural Matrices

valuation of tructural Matrices

Flexibility Matrix Example

Stiffness Matrix

Symmetry

Direct Assemblage

Example

Mass Matrix

Consistent Mass Matrix

Damping Matrix

Example

ieometric Stiffness

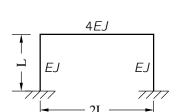
Blackboard Time!

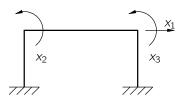
Structural Matrices

Giacomo Boffi

Example

Geometric Stiffness





its bounding nodes.

The mass matrix maps the nodal accelerations to nodal inertial forces, and the most common assumption is to concentrate all masses in nodal point masses, without rotational inertia, computed *lumping* a fraction of each element mass (or a fraction of the supported mass) on all

This procedure leads to a so called *lumped* mass matrix, a diagonal matrix with diagonal elements greater than zero for all the translational degrees of freedom, and diagonal elements equal to zero for angular degrees of freedom.

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Flexibility Matrix Example

Stiffness Matrix

Symmetry
Direct Assemblage

Direct Assemblage Example

Mass Matrix

Consistent Mass Matrix

Damping Matrix

Example

eometric Stiffness cternal Loading

Mass Matrix

condensation procedure.

Structural Matrices

Giacomo Boffi

The mass matrix is definite positive *only* if all the structure *DOF*'s are translational degrees of freedom, otherwise **M** is semi-definite positive and the eigenvalue procedure is not directly applicable. This problem can be overcome either by using a *consistent* mass matrix or using the *static*

ntroductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Flexibility Matrix

Stiffnare Matrix

Strain Energy

Symmetry

Direct Assemblage

Mass Matrix

ass Matrix

Consistent Mass Matrix

Damping Matrix

amping Matrix Example

eometric Stiffness

hoice of Property

Example

Stiffness Matrix

Symmetry

Direct Assemblage

Mass Matrix

Consistent Mass Matrix

mping Matrix

xample

Geometric Stiffness External Loading

Choice of Property Formulation

A consistent mass matrix is built using the rigorous *FEM* procedure, computing the nodal reactions that equilibrate the distributed inertial forces that develop in the element due to a linear combination of inertial forces

Using our beam example as a reference, consider the inertial forces associated with a single nodal acceleration \ddot{x}_j , $f_{l,j}(s) = m(s)\phi_j(s)\ddot{x}_j$ and denote with $m_{ij}\ddot{x}_j$ the reaction associated with the *i*-nth degree of freedom of the element, by the PVD

$$\delta x_i m_{ij} \ddot{x}_j = \int \delta x_i \phi_i(s) m(s) \phi_j(s) ds \ddot{x}_j$$

simplifying

$$m_{ij} = \int m(s)\phi_i(s)\phi_j(s) ds.$$

For $m(s) = \overline{m} = \text{const.}$

$$\mathbf{f}_{I} = \frac{\overline{m}L}{420} \begin{bmatrix} 156 & 54 & 22L & -13L \\ 54 & 156 & 13L & -22L \\ 22L & 13L & 4L^2 & -3L^2 \\ -13L & -22L & -3L^2 & 4L^2 \end{bmatrix} \ddot{\mathbf{x}}$$

Structural Matrices

Giacomo Boffi

Pro

- ▶ some convergence theorem of *FEM* theory holds only if the mass matrix is consistent,
- sligtly more accurate results,
- no need for static condensation.

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Example

Stiffness Matrix

Symmetry

Direct Assemblage

ass Matrix

Consistent Mass M

Discussion

Damping Matrix

Geometric Stiffness

Chaire of Door

Pro

- ▶ some convergence theorem of *FEM* theory holds only if the mass matrix is consistent,
- sligtly more accurate results,
- no need for static condensation.

Contra

- ► **M** is no more diagonal, heavy computational aggravation,
- static condensation is computationally beneficial, inasmuch it *reduces* the global number of degrees of freedom.

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Example Stiffners Matrix

Stiffness Matrix

Symmetry Direct Assemblage

lass Matrix

Consistent Mass Matrix
Discussion

Damping Matrix

Geometric Stiffnes External Loading

Damping Matrix

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

lexibility Matrix Example

Strain Energy

Symmetry Direct Assemblage

xample ass Matrix

lass Matrix

onsistent Mass N scussion

Damping Matrix

Example

xternal Loading

Choice of Property

Formulation

For each element $c_{ij} = \int c(s)\phi_i(s)\phi_j(s) ds$ and the damping matrix **C** can be assembled from element contributions.

Damping Matrix

Structural Matrices

Giacomo Boffi

For each element $c_{ij} = \int c(s)\phi_i(s)\phi_j(s) ds$ and the damping matrix **C** can be assembled from element contributions. However, using the FEM $\mathbf{C}^{\star} = \mathbf{\Psi}^{T} \mathbf{C} \mathbf{\Psi}$ is not diagonal and hence the modal equations are no more uncoupled!

Damping Matrix

previously:

Remarks

Structural Matrices

Evaluation of Structural Matrices

Example Example

Stiffness Matrix

Symmetry

Direct Assemblage

=xampie

ass Matrix

Discussion

Damping Matrix

Example

Seometric Stiffnes External Loading

Choice of Property Formulation

For each element $c_{ij} = \int c(s)\phi_i(s)\phi_j(s)\,\mathrm{d}s$ and the damping matrix \mathbf{C} can be assembled from element contributions. However, using the FEM $\mathbf{C}^* = \mathbf{\Psi}^T\mathbf{C}\,\mathbf{\Psi}$ is not diagonal and hence the modal equations are no more uncoupled! The alternative is to write directly the global damping matrix, in terms of the underdetermined coefficients \mathfrak{c}_b and the infinite sequence of orthogonal matrices we described

$$\mathbf{C} = \sum_{b} \mathfrak{c}_{b} \mathbf{M} \left(\mathbf{M}^{-1} \mathbf{K} \right)^{b}$$
 .

With our definition of **C**.

$$\mathbf{C} = \sum_b \mathfrak{c}_b \mathbf{M} \left(\mathbf{M}^{-1} \mathbf{K} \right)^b$$
 ,

assuming normalized eigenvectors, we can write the individual component of $\boldsymbol{C}^{\star} = \boldsymbol{\Psi}^{T}\boldsymbol{C}\,\boldsymbol{\Psi}$

$$c_{ij}^{\star} = oldsymbol{\psi}_i^{T} \mathbf{C} \, oldsymbol{\psi}_j = \delta_{ij} \sum_b \mathfrak{c}_b \omega_j^{2b}$$

due to the additional orthogonality relations, we recognize that now \mathbf{C}^* is a diagonal matrix.

ntroductory

Structural Matrices

Evaluation of Structural Matrices

Flexibility Matrix Example

Stiffness Matrix

Symmetry

Direct Assemblage

Mass Matrix

Consistent Mass Matrix

Damping Matrix

Damping Matrix

ieometric Stiffness

Damping Matrix

With our definition of **C**.

$$\mathbf{C} = \sum_b \mathfrak{c}_b \mathbf{M} \left(\mathbf{M}^{-1} \mathbf{K}
ight)^b$$
 ,

assuming normalized eigenvectors, we can write the individual component of $\mathbf{C}^{\star} = \mathbf{\Psi}^{T} \mathbf{C} \mathbf{\Psi}$

$$c_{ij}^{\star} = \boldsymbol{\psi}_{i}^{T} \mathbf{C} \, \boldsymbol{\psi}_{j} = \delta_{ij} \sum_{b} \mathfrak{c}_{b} \omega_{j}^{2b}$$

due to the additional orthogonality relations, we recognize that now \mathbf{C}^* is a diagonal matrix.

Introducing the modal damping C_i we have

$$C_j = \boldsymbol{\psi}_j^{\mathsf{T}} \mathbf{C} \, \boldsymbol{\psi}_j = \sum_b \mathfrak{c}_b \omega_j^{2b} = 2\zeta_j \omega_j$$

and we can write a system of linear equations in the \mathfrak{c}_h .

Example

We want a fixed, 5% damping ratio for the first three modes, taking note that the modal equation of motion is

$$\ddot{q}_i + 2\zeta_i\omega_i\dot{q}_i + \omega_i^2q_i = p_i^*$$

Using

$$\textbf{C} = \mathfrak{c}_0 \textbf{M} + \mathfrak{c}_1 \textbf{K} + \mathfrak{c}_2 \textbf{K} \textbf{M}^{-1} \textbf{K}$$

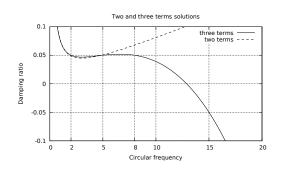
we have

$$2 \times 0.05 \begin{Bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{Bmatrix} = \begin{bmatrix} 1 & \omega_1^2 & \omega_1^4 \\ 1 & \omega_2^2 & \omega_2^4 \\ 1 & \omega_3^2 & \omega_3^4 \end{bmatrix} \begin{Bmatrix} \mathfrak{c}_0 \\ \mathfrak{c}_1 \\ \mathfrak{c}_2 \end{Bmatrix}$$

Solving for the \mathfrak{c} 's and substituting above, the resulting damping matrix is orthogonal to every eigenvector of the system, for the first three modes, leads to a modal damping ratio that is equal to 5%.

Computing the coefficients c_0 , c_1 and c_2 to have a 5% damping at frequencies $\omega_1 = 2$, $\omega_2 = 5$ and $\omega_3 = 8$ we have $\mathfrak{c}_0 = 1200/9100$. $\mathfrak{c}_1 = 159/9100$ and $\mathfrak{c}_2 = -1/9100$.

Writing $\zeta(\omega)=\frac{1}{2}\left(\frac{\mathfrak{c}_0}{\omega}+\mathfrak{c}_1\omega+\mathfrak{c}_2\omega^3\right)$ we can plot the above function, along with its two term equivalent ($\mathfrak{c}_0 = 10/70, \mathfrak{c}_1 = 1/70$).



Giacomo Boffi

Example

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Flexibility Matrix Example

Stiffness Matrix

Symmetry

Direct Assemblage

Mass Matrix

Consistent Mass Matrix

Discussion

Damping Matrix

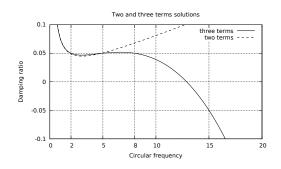
Example Geometric Stiffnes

external Loading

Choice of Property Formulation

Computing the coefficients \mathfrak{c}_0 , \mathfrak{c}_1 and \mathfrak{c}_2 to have a 5% damping at frequencies $\omega_1=2$, $\omega_2=5$ and $\omega_3=8$ we have $\mathfrak{c}_0=1200/9100$, $\mathfrak{c}_1=159/9100$ and $\mathfrak{c}_2=-1/9100$.

Writing $\zeta(\omega)=\frac{1}{2}\left(\frac{\mathfrak{c}_0}{\omega}+\mathfrak{c}_1\omega+\mathfrak{c}_2\omega^3\right)$ we can plot the above function, along with its two term equivalent $(\mathfrak{c}_0=10/70,\mathfrak{c}_1=1/70)$.



Negative damping? No, thank you: use only an even number of terms.

evaluation of structural Matrices

Example

Stiffness Matrix

Symmetry

Direct Assemblage Example

lass Matrix

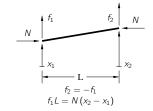
Lonsistent Mass Matri Discussion

mping Matrix

Geometric Stiffness

Choice of Property

A common assumption is based on a linear approximation, for a beam element



It is possible to compute the geometrical stiffness matrix using FEM, shape functions and PVD,

$$k_{\mathsf{G},ij} = \int N(s) \phi_i'(s) \phi_j'(s) \,\mathrm{d} s,$$

for constant N

$$\mathbf{K}_{G} = \frac{N}{30L} \begin{bmatrix} 36 & -36 & 3L & 3L \\ -36 & 36 & -3L & -3L \\ 3L & -3L & 4L^{2} & -L^{2} \\ 3L & -3L & -L^{2} & 4L^{2} \end{bmatrix}$$

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Flexibility Matri: Example

Stiffness Matrix

Symmetry

Direct Assemblage

example

ass Matrix

Discussion

Damping Matrix

Example

External Loading

Choice of Property

Following the same line of reasoning that we applied to find nodal inertial forces, by the PVD and the use of shape functions we have

$$p_i(t) = \int p(s,t)\phi_i(s) ds.$$

For a constant, uniform load $p(s, t) = \overline{p} = \text{const}$, applied on a beam element,

$$\mathbf{p} = \overline{p}L \left\{ \frac{1}{2} \quad \frac{1}{2} \quad \frac{L}{12} \quad -\frac{L}{12} \right\}^T$$

Structural Matrices

Giacomo Boffi

Simplified Approach

Some structural parameter is approximated, only translational *DOF*'s are retained in dynamic analysis.

Introductory Remarks

> tructural latrices

Evaluation of Structural Matrices

Choice of Property Formulation

Static Condensation Example

Structural Matrices

Giacomo Boffi

Simplified Approach

Some structural parameter is approximated, only translational *DOF*'s are retained in dynamic analysis.

Consistent Approach

All structural parameters are computed according to the *FEM*, and all *DOF*'s are retained in dynamic analysis.

ntroductory Remarks

tructural Natrices

Evaluation of Structural Matrices

Choice of Property Formulation

Static Condensation Example

Structural Matrices

Giacomo Boffi

Choice of Property Formulation

Simplified Approach

Some structural parameter is approximated, only translational DOF's are retained in dynamic analysis.

Consistent Approach

All structural parameters are computed according to the FEM, and all DOF's are retained in dynamic analysis.

If we choose a simplified approach, we must use a procedure to remove unneeded structural DOF's from the model that we use for the dynamic analysis.

Structural Matrices

Giacomo Boffi

Choice of Property Formulation

Simplified Approach

Some structural parameter is approximated, only translational DOF's are retained in dynamic analysis.

Consistent Approach

All structural parameters are computed according to the FEM, and all DOF's are retained in dynamic analysis.

If we choose a simplified approach, we must use a procedure to remove unneeded structural DOF's from the model that we use for the dynamic analysis. Enter the Static Condensation Method.

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

Structural Matrices

Formulation

Static Condensation Example

We have, from a *FEM* analysis, a stiffnes matrix that uses all nodal *DOF*'s, and from the lumped mass procedure a mass matrix were only translational (and maybe a few rotational) *DOF*'s are blessed with a non zero diagonal term.

We have, from a *FEM* analysis, a stiffnes matrix that uses all nodal DOF's, and from the lumped mass procedure a mass matrix were only translational (and maybe a few rotational) DOF's are blessed with a non zero diagonal term.

In this case, we can always rearrange and partition the displacement vector \mathbf{x} in two subvectors:

- **x**_A all the *DOF*'s that are associated with inertial forces and
- \mathbf{x}_{R} all the remaining *DOF*'s not associated with inertial forces.

$$\mathbf{x} = \left\{ egin{matrix} \mathbf{x}_{\mathcal{A}} \\ \mathbf{x}_{\mathcal{B}} \\ \end{smallmatrix}
ight\}$$

After rearranging the DOF's, we must rearrange also the rows (equations) and the columns (force contributions) in the structural matrices, and eventually partition the matrices so that

$$\begin{cases} \mathbf{f}_{I} \\ \mathbf{0} \end{cases} = \begin{bmatrix} \mathbf{M}_{AA} & \mathbf{M}_{AB} \\ \mathbf{M}_{BA} & \mathbf{M}_{BB} \end{bmatrix} \begin{pmatrix} \ddot{\mathbf{x}}_{A} \\ \ddot{\mathbf{x}}_{B} \end{pmatrix}$$

$$\mathbf{f}_{S} = \begin{bmatrix} \mathbf{K}_{AA} & \mathbf{K}_{AB} \\ \mathbf{K}_{BA} & \mathbf{K}_{BB} \end{bmatrix} \begin{pmatrix} \mathbf{x}_{A} \\ \mathbf{x}_{B} \end{pmatrix}$$

with

$$\mathbf{M}_{\mathit{BA}} = \mathbf{M}_{\mathit{AB}}^{\mathit{T}} = \mathbf{0}, \quad \mathbf{M}_{\mathit{BB}} = \mathbf{0}, \quad \mathbf{K}_{\mathit{BA}} = \mathbf{K}_{\mathit{AB}}^{\mathit{T}}$$

After rearranging the DOF's, we must rearrange also the rows (equations) and the columns (force contributions) in the structural matrices, and eventually partition the matrices so that

$$\begin{cases} \mathbf{f}_{I} \\ \mathbf{0} \end{cases} = \begin{bmatrix} \mathbf{M}_{AA} & \mathbf{M}_{AB} \\ \mathbf{M}_{BA} & \mathbf{M}_{BB} \end{bmatrix} \begin{pmatrix} \ddot{\mathbf{x}}_{A} \\ \ddot{\mathbf{x}}_{B} \end{pmatrix}$$

$$\mathbf{f}_{S} = \begin{bmatrix} \mathbf{K}_{AA} & \mathbf{K}_{AB} \\ \mathbf{K}_{BA} & \mathbf{K}_{BB} \end{bmatrix} \begin{pmatrix} \mathbf{x}_{A} \\ \mathbf{x}_{B} \end{pmatrix}$$

with

$$\mathbf{M}_{\mathit{BA}} = \mathbf{M}_{\mathit{AB}}^{\mathit{T}} = \mathbf{0}, \quad \mathbf{M}_{\mathit{BB}} = \mathbf{0}, \quad \mathbf{K}_{\mathit{BA}} = \mathbf{K}_{\mathit{AB}}^{\mathit{T}}$$

Finally we rearrange the loadings vector and write...

Structural Matrices

Giacomo Boffi

... the equation of dynamic equilibrium,

$$\begin{aligned} & \mathbf{p}_A = \mathbf{M}_{AA}\ddot{\mathbf{x}}_A + \mathbf{M}_{AB}\ddot{\mathbf{x}}_B + \mathbf{K}_{AA}\mathbf{x}_A + \mathbf{K}_{AB}\mathbf{x}_B \\ & \mathbf{p}_B = \mathbf{M}_{BA}\ddot{\mathbf{x}}_A + \mathbf{M}_{BB}\ddot{\mathbf{x}}_B + \mathbf{K}_{BA}\mathbf{x}_A + \mathbf{K}_{BB}\mathbf{x}_B \end{aligned}$$

Introductory Remarks

Structural Matrices

Structural Matrices

Choice of Property Formulation

Static Condensation Example

Giacomo Boffi

Static Condensation

... the equation of dynamic equilibrium,

$$\mathbf{p}_{A} = \mathbf{M}_{AA}\ddot{\mathbf{x}}_{A} + \mathbf{M}_{AB}\ddot{\mathbf{x}}_{B} + \mathbf{K}_{AA}\mathbf{x}_{A} + \mathbf{K}_{AB}\mathbf{x}_{B}$$
$$\mathbf{p}_{B} = \mathbf{M}_{BA}\ddot{\mathbf{x}}_{A} + \mathbf{M}_{BB}\ddot{\mathbf{x}}_{B} + \mathbf{K}_{BA}\mathbf{x}_{A} + \mathbf{K}_{BB}\mathbf{x}_{B}$$

The highlighted terms are zero vectors, so we can simplify

$$\begin{aligned} \mathbf{M}_{AA}\ddot{\mathbf{x}}_A + \mathbf{K}_{AA}\mathbf{x}_A + \mathbf{K}_{AB}\mathbf{x}_B &= \mathbf{p}_A \\ \mathbf{K}_{BA}\mathbf{x}_A + \mathbf{K}_{BB}\mathbf{x}_B &= \mathbf{p}_B \end{aligned}$$

solving for \mathbf{x}_B in the 2nd equation and substituting

$$\begin{split} \mathbf{x}_B &= \mathbf{K}_{BB}^{-1} \mathbf{p}_B - \mathbf{K}_{BB}^{-1} \mathbf{K}_{BA} \mathbf{x}_A \\ \mathbf{p}_A &- \mathbf{K}_{AB} \mathbf{K}_{BB}^{-1} \mathbf{p}_B = \mathbf{M}_{AA} \ddot{\mathbf{x}}_A + \left(\mathbf{K}_{AA} - \mathbf{K}_{AB} \mathbf{K}_{BB}^{-1} \mathbf{K}_{BA} \right) \mathbf{x}_A \end{split}$$

Giacomo Boffi

... the equation of dynamic equilibrium,

$$\mathbf{p}_{A} = \mathbf{M}_{AA}\ddot{\mathbf{x}}_{A} + \mathbf{M}_{AB}\ddot{\mathbf{x}}_{B} + \mathbf{K}_{AA}\mathbf{x}_{A} + \mathbf{K}_{AB}\mathbf{x}_{B}$$
$$\mathbf{p}_{B} = \mathbf{M}_{BA}\ddot{\mathbf{x}}_{A} + \mathbf{M}_{BB}\ddot{\mathbf{x}}_{B} + \mathbf{K}_{BA}\mathbf{x}_{A} + \mathbf{K}_{BB}\mathbf{x}_{B}$$

The highlighted terms are zero vectors, so we can simplify

$$\mathbf{M}_{AA}\ddot{\mathbf{x}}_A + \mathbf{K}_{AA}\mathbf{x}_A + \mathbf{K}_{AB}\mathbf{x}_B = \mathbf{p}_A$$
$$\mathbf{K}_{BA}\mathbf{x}_A + \mathbf{K}_{BB}\mathbf{x}_B = \mathbf{p}_B$$

solving for \mathbf{x}_B in the 2nd equation and substituting

$$\begin{split} \mathbf{x}_B &= \mathbf{K}_{BB}^{-1} \mathbf{p}_B - \mathbf{K}_{BB}^{-1} \mathbf{K}_{BA} \mathbf{x}_A \\ \mathbf{p}_A &- \mathbf{K}_{AB} \mathbf{K}_{BB}^{-1} \mathbf{p}_B = \mathbf{M}_{AA} \ddot{\mathbf{x}}_A + \left(\mathbf{K}_{AA} - \mathbf{K}_{AB} \mathbf{K}_{BB}^{-1} \mathbf{K}_{BA} \right) \mathbf{x}_A \end{split}$$

Static Condensation

Structural Matrices

evaluation of Structural Matrices

Formulation

Static Condensation Example

Going back to the homogeneous problem, with obvious positions we can write

$$(\overline{\mathbf{K}} - \omega^2 \overline{\mathbf{M}}) \, \boldsymbol{\psi}_A = \mathbf{0}$$

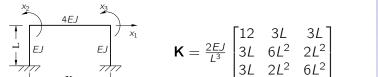
but the ψ_A are only part of the structural eigenvectors, because in essentially every application we must consider also the other *DOF*'s, so we write

$$oldsymbol{\psi}_i = egin{cases} oldsymbol{\psi}_{A,i} \ oldsymbol{\psi}_{B,i} \end{pmatrix}$$
 , with $oldsymbol{\psi}_{B,i} = oldsymbol{\mathsf{K}}_{BB}^{-1} oldsymbol{\mathsf{K}}_{BA} oldsymbol{\psi}_{A,i}$

Example

Structural Matrices

Giacomo Boffi



Introductory Remarks

tructural Natrices

Evaluation of Structural Matrices

Choice of Property Formulation

Static Condensation Example

Example

Structural Matrices

Giacomo Boffi

$$\mathbf{K} = \frac{2EJ}{L^3} \begin{bmatrix} 12 & 3L & 3L \\ 3L & 6L^2 & 2L^2 \\ 3L & 2L^2 & 6L^2 \end{bmatrix}$$

$$\mathbf{K}_{BB} = \frac{4EJ}{L} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, \mathbf{K}_{BB}^{-1} = \frac{L}{32EJ} \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix},$$

$$\mathbf{K}_{BB} = \frac{6EJ}{L} \begin{bmatrix} 1 & 1 \end{bmatrix}, \mathbf{K}_{BB} = \frac{L}{32EJ} \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix},$$

$$\mathbf{K}_{AB} = \frac{6EJ}{L^2} \begin{bmatrix} 1 & 1 \end{bmatrix}, \mathbf{K}_{AB} \mathbf{K}_{BB}^{-1} \mathbf{K}_{AB}^{T} = \frac{6EJ}{L^2} \frac{L}{32EJ} \frac{6EJ}{L^2} \times 4 = \frac{9}{2} \frac{EJ}{L^3}$$

The matrix $\overline{\mathbf{K}}$ is

$$\overline{\mathbf{K}} = \mathbf{K}_{AA} - \mathbf{K}_{AB} \mathbf{K}_{BB}^{-1} \mathbf{K}_{AB}^{T} = (24 - \frac{9}{2}) \frac{EJ}{L^{3}} = \frac{39}{2} \frac{EJ}{L^{3}}$$