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The structural matrices

K = k


+2 −1 0 0 0
−1 +2 −1 0 0
0 −1 +2 −1 0
0 0 −1 +2 −1
0 0 0 −1 +1

 M = m


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The Ritz base vectors and the reduced matrices,

Φ =


0.2 −0.5
0.4 −1.0
0.6 −0.5
0.8 +0.0
1.0 1.0


K̄ = k

[
0.2 0.2
0.2 2.0

]
M̄ = m

[
2.2 0.2
0.2 2.5

]

Red. eigenproblem (ρ = ω2 m/k):
[
2− 22ρ 2− 2ρ
2− 2ρ 20− 25ρ

]{
z1
z2

}
=

{
0
0

}
The roots are ρ1 = 0.0824, ρ2 = 0.800, the frequencies are
ω1 = 0.287

√
k/m [ = 0.285], ω2 = 0.850

√
k/m [ = 0.831], while the

k/m normalized exact eigenvalues are [0.08101405, 0.69027853].
The first eigenvalue is estimated with good approximation.
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Rayleigh-Ritz Example

The Ritz coordinates eigenvector matrix is Z =

[
1.329 0.03170
−0.1360 1.240

]
.

The RR eigenvector matrix, Φ and the exact one, Ψ:

Φ =


+0.3338 −0.6135
+0.6676 −1.2270
+0.8654 −0.6008
+1.0632 +0.0254
+1.1932 +1.2713

 , Ψ =


+0.3338 −0.8398
+0.6405 −1.0999
+0.8954 −0.6008
+1.0779 +0.3131
+1.1932 +1.0108

 .

The accuracy of the estimates for the 1st mode is very good, on the
contrary the 2nd mode estimates are in error starting from the second
digit.

It may be interesting to use Φ̂ = K−1MΦ as a new Ritz base to get a
new estimate of the Ritz and of the structural eigenpairs.
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Introduction to Subspace Iteration

We have seen that the Rayleigh-Ritz procedure can offer a
good estimate for p ≈ M/2 modes, mostly because of the
arbitrariness in the choice of the Ritz reduced base Φ.
Solving a M = 2p order eigenvalue problem to get p
eigenvalues is very onerous as the operation count is
O(M3).

If we could reduce the arbitrariness in the choice of the Ritz
base vectors, we could use less vectors and solve a much
smaller (in terms of operations count) eigenvalue problem.
If one thinks of it, with a M = 1 base we could nevertheless
compute within arbitrary accuracy one eigenvector using
Matrix Iteration, isn’t it? the trick is changing the base at
every iteration...
It happens that Matrix Iteration can be applied to a set of
trial vectors at once, under the name of Subspace Iteration.
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Statement of the procedure

The first M eigenvalue equations can be written in matrix
algebra, in terms of an N ×M matrix of eigenvectors Φ and
an M ×M diagonal matrix Λ that collects the eigenvalues

K
N×N

Φ
N×M

= M
N×N

Φ
N×M

Λ
M×M

Using again the hat notation for the unnormalized iterate,
from the previous equation we can write

KΦ̂1 = MΦ0

where Φ0 is the matrix, N ×M, of the zero order trial
vectors, and Φ̂1 is the matrix of the non-normalized first
order trial vectors.
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Orthonormalization

To proceed with iterations,

1. the trial vectors in Φ̂n+1 must be orthogonalized, so
that each trial vector converges to a different
eigenvector instead of collapsing to the first
eigenvector,

2. all the trial vectors must be normalized, so that the
ratio between the normalized vectors and the
unnormalized iterated vectors converges to the
corresponding eigenvalue.

These operations can be performed in different ways (e.g.,
ortho-normalization by Gram-Schmidt1 procedure).
Another possibility to do both at once is solving a
Rayleigh-Ritz eigenvalue problem, defined in the Ritz base
constituted by the vectors in Φ̂n+1.

1Next week, more on Gram-Schmidt procedure
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Associated Eigenvalue Problem

Developing the procedure for n = 0, with the generalized matrices

K?1 = Φ̂1
TKΦ̂1

and
M?

1 = Φ̂1
TMΦ̂1

the Rayleigh-Ritz eigenvalue problem associated with the
orthonormalisation of Φ̂1 is

K?1Ẑ1 = M?
1Ẑ1Ω

2
1.

After solving for the Ritz coordinates mode shapes, Ẑ1 and the
frequencies Ω2

1, using any suitable procedure, it is usually convenient to
normalize the shapes, so that Ẑ1

TM?
1Ẑ1 = I. The ortho-normalized set

of trial vectors at the end of the iteration is then written as

Φ1 = Φ̂1Ẑ1.

The entire process can be repeated for n = 1, then n = 2, n = . . .

until the eigenvalues converge within a prescribed tolerance.
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Convergence

In principle, the procedure will converge to all the M lower
eigenvalues and eigenvectors of the structural problem, but
it was found that the subspace iteration method converges
faster to the lower p eigenpairs, those required for dynamic
analysis, if there is some additional trial vector; on the
other hand, too many additional trial vectors slow down the
computation without ulterior benefits.

Experience has shown that the optimal total number M of
trial vectors is the minimum of 2p and p + 8.
The subspace iteration method makes it possible to
compute simultaneosly a set of eigenpairs within any
required level of approximation, and is the preferred method
to compute the eigenpairs of a complex dynamic system.



Truncation Errors,
Correction
Procedures

Giacomo Boffi

Rayleigh-Ritz
Example

Subspace iteration

How many
eigenvectors?

Convergence

In principle, the procedure will converge to all the M lower
eigenvalues and eigenvectors of the structural problem, but
it was found that the subspace iteration method converges
faster to the lower p eigenpairs, those required for dynamic
analysis, if there is some additional trial vector; on the
other hand, too many additional trial vectors slow down the
computation without ulterior benefits.
Experience has shown that the optimal total number M of
trial vectors is the minimum of 2p and p + 8.

The subspace iteration method makes it possible to
compute simultaneosly a set of eigenpairs within any
required level of approximation, and is the preferred method
to compute the eigenpairs of a complex dynamic system.



Truncation Errors,
Correction
Procedures

Giacomo Boffi

Rayleigh-Ritz
Example

Subspace iteration

How many
eigenvectors?

Convergence

In principle, the procedure will converge to all the M lower
eigenvalues and eigenvectors of the structural problem, but
it was found that the subspace iteration method converges
faster to the lower p eigenpairs, those required for dynamic
analysis, if there is some additional trial vector; on the
other hand, too many additional trial vectors slow down the
computation without ulterior benefits.
Experience has shown that the optimal total number M of
trial vectors is the minimum of 2p and p + 8.
The subspace iteration method makes it possible to
compute simultaneosly a set of eigenpairs within any
required level of approximation, and is the preferred method
to compute the eigenpairs of a complex dynamic system.



Truncation Errors,
Correction
Procedures

Giacomo Boffi

Rayleigh-Ritz
Example

Subspace iteration

How many
eigenvectors?

Standard Form

In algebra textbooks, the eigenproblem is usually stated as

Ay = λy

and all the relevant algorithms to actually compute the eigenthings
(Jacobi method, QR method, etc) are referred to the above
statement of the problem.
Our problem is, instead, formulated as

Kx = λMx.

Any symmetric, definite positive matrix B can be subjected to a unique
Choleski Decomposition (CD), B = LLT where L is a lower triangular
matrix. Applying CD to M, the eigenvector equation is,

Kx = K (LT )−1LT︸ ︷︷ ︸
I

x = λLLT︸︷︷︸
M

x.

Premultiplying by L−1, with y = LTx

L−1K(LT )−1︸ ︷︷ ︸
A

LTx︸︷︷︸
y

= λL−1L︸ ︷︷ ︸
I

LTx︸︷︷︸
y

→ Ay = λy.
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How Many Eigenvectors

are needed to correctly represent the response of a MDOF
system to a time-varying load?
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Introduction

To understand how many eigenvectors we have to use in a
dynamic analysis, we must consider two aspects, the
loading shape and the excitation frequency.
In the following, we’ll consider only external loadings whose
dependance on time and space can be separated, as in

p(x, t) = r f (t),

so that we can discuss separately the two aspects of the
problem.
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Introduction

It is worth noting that earthquake loadings are precisely of
this type:

p(x, t) = Mr̃ üg(t)

where the vector r̃ is used to choose the structural dof’s
that are excited by the ground motion component under
consideration.

Usually r̃ is simply a vector of zeros and ones that represents the
degrees of freedom that are excited by a component of the ground
acceleration.

Multiplication of M by g (the acceleration of gravity) and
division of üg by g, serves to show a dimensional load
vector multiplied by an adimensional function.

p(x, t) = gMr̃ üg(t)
g

= rgfg(t)
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Modal Partecipation Factor

Under the assumption of separability, we can write the i-th modal
equation of motion as

q̈i + 2ζiωi q̇i + ω2
i qi =

 ψ
T
i r

Mi
f (t)

gψ
T
i Mr̃
Mi

fg(t)
= Γi f (t)

with the modal mass Mi = ψT
i Mψi .

It is apparent that the modal response amplitude depends

I on the characteristics of the time dependency of loading,
f (t),

I on the so called modal partecipation factor Γi ,

Γi = ψT
i r/Mi

= gψT
i Mr̃/Mi = ψT

i rg/Mi

Γ = M∗−1ΨT r

Note that both the definitions of modal partecipation give it the
dimensions of an acceleration.
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Partecipation Factor Amplitudes

For a given loading r the modal partecipation factor Γi is proportional
to the work done by the modal displacement qiψ

T
i for the given

loading r:
I if the mode shape and the loading shape are approximately equal

(equal signs, component by component), the work (dot product)
is maximized,

I if the mode shape is significantly different from the loading
(different signs), there is some amount of cancellation and the
value of the Γ’s will be reduced.
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Example

Consider a shear type building, with mass distribution
approximately constant over its height:

r̃ = {1, 1, . . . , 1}T and gMr̃ ≈ mg{1, 1, . . . , 1}T .

an external loading and the first 3 eigenvectors as sketched
below:

gMr̃ r ψ1 ψ2 ψ3
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Example, cont.

gMr̃ r ψ1 ψ2 ψ3

For EQ loading, Γ1 is relatively large for the first mode, as
loading components and displacements have the same sign,
with respect to other Γi ’s, where the oscillating nature of
the higher eigenvectors will lead to increasing cancellation.
On the other hand, consider the external loading, whose
peculiar shape is similar to the 3rd mode. Γ3 will be more
relevant than Γi ’s for lower or higher modes.
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Modal Loads Expansion

We define the modal load contribution as

ri = Mψiai

and express the load vector as a linear combination of the modal
contributions

r =
∑

i

Mψiai =
∑

i

ri .

If we premultiply by ψT
j the above equation,

ψT
j r = ψT

j

∑
i

Mψiai =
∑

i

δijMiai = Mjaj

1. a modal load component works only for the displacements
associated with the corresponding eigenvector,

2. comparing with the definition of Γi = ψT
i r/Mi , we conclude that

ri = MψiΓi

R = MΨ diag(Γ)
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Equivalent Static Forces

For mode i , the equation of motion is

q̈i + 2ζiωi q̇i + ω2
i qi = Γi f (t)

with qi = ΓiDi ,† we can write, to single out the
dependency on the modulating function,

D̈i + 2ζiωi Ḋi + ω2
i Di = f (t)

The modal contribution to displacement is

xi = ΓiψiDi(t)

and the modal contribution to elastic forces f i = Kxi can
be written (being Kψi = ω2

i Mψi) as

f i = Kxi = ΓiKψiDi = ω2
i (ΓiMψi)Di = riω2

i Di

1† Di (dimensionally the square of a time), is called
pseudo-displacement.
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and the modal contribution to elastic forces f i = Kxi can
be written (being Kψi = ω2

i Mψi) as

f i = Kxi = ΓiKψiDi = ω2
i (ΓiMψi)Di = riω2

i Di

1† Di (dimensionally the square of a time), is called
pseudo-displacement.
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Equivalent Static Response

The response can be determined by superposition of the effects of
these pseudo-static forces f i = riω

2
i Di(t).

If a required response quantity (be it a nodal displacement, a bending
moment in a beam, the total shear force in a building storey, etc etc)
is indicated by s(t), we can compute with a static calculation (usually
using the FEM model underlying the dynamic analysis) the modal
static contribution ssti and write

s(t) =
∑

ssti (ω2
i Di(t)) =

∑
si(t),

where the modal contribution to response si(t) is given by

1. static analysis using ri as the static load vector,

2. dynamic amplification using the factor ω2
i Di(t).

This formulation is particularly apt to our discussion of different
contributions to response components.
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Modal Contribution Factors (MCF)

Say that the static response due to r is denoted by sst, then
si(t), the modal contribution to response s(t), can be
written

si(t) = ssti ω
2
i Di(t) = sst

ssti
sst

ω2
i Di(t) = s̄isst ω2

i Di(t).

We have introduced s̄i =
ssti
sst , the modal contribution factor,

the ratio of the modal static contribution to the total static
response.
The s̄i are dimensionless, are indipendent on the eigenvector
scaling procedure and their sum is unity,

∑
s̄i = 1.
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Maximum Response

Denote by Di0 the maximum absolute value (or peak) of
the pseudo displacement time history,

Di0 = max
t
{|Di(t)|}.

It will be
si0 = s̄isst ω2

i Di0

Eventually, the dynamic response factor for mode i , Rdi is
defined by

Rdi =
Di0

Dst
i0

where Dst
i0 is the peak value of the static pseudo-

displacement

Dst
i =

f (t)

ω2
i
, Dst

i0 =
f0
ω2

i
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Maximum Response

With f0 = max{|f (t)|} the peak p-displacement is

Di0 = Rdi f0/ω2
i

and the peak of the modal contribution is

si0 = s̄isst ω2
i Di0 = f0sst s̄i Rdi

The first two terms are independent of the mode, the last
are independent from each other and their product is the
factor that influences the modal contributions.
Note that this product has the sign of s̄i , as the dynamic
response factor is always positive.
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Maximum Response

With f0 = max{|f (t)|} the peak p-displacement is

Di0 = Rdi f0/ω2
i

and the peak of the modal contribution is

si0 = s̄isst ω2
i Di0 = f0sst s̄i Rdi

The first two terms are independent of the mode, the last
are independent from each other and their product is the
factor that influences the modal contributions.
Note that this product has the sign of s̄i , as the dynamic
response factor is always positive.



MCF’s example
The following table (from Chopra, 2nd ed.) displays the s̄i and their
partial sums for a shear-type, 5 floors building where all the storey
masses are equal and all the storey stiffnesses are equal too.
The response quantities chosen are x̄5n, the MCF’s to the top
displacement and V̄n, the MCF ’s to the base shear, for two different
load shapes.

r = {0, 0, 0, 0, 1}T r = {0, 0, 0,−1, 2}T

Top Disp. Base Shear Top Disp. Base Shear

n or i x̄5n
i∑

x̄5j V̄n

i∑
V̄j x̄5n

i∑
x̄5j V̄n

i∑
V̄j

1 0.880 0.880 1.252 1.252 0.792 0.792 1.353 1.353
2 0.087 0.967 -0.362 0.890 0.123 0.915 -0.612 0.741
3 0.024 0.991 0.159 1.048 0.055 0.970 0.043 1.172
4 0.008 0.998 -0.063 0.985 0.024 0.994 -0.242 0.930
5 0.002 1.000 0.015 1.000 0.006 1.000 0.070 1.000

Note that:
1. for any given r, the base shear is more influenced by higher modes, and
2. for any given response quantity, the second, skewed r gives greater

modal contributions for higher modes.
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Dynamic Response Ratios

Dynamic Response Ratios are the same that we have seen for SDOF
systems.
Next page, for an undamped system,

I solid line, the ratio of the modal elastic force FS,i = Kiqi sinωt to
the harmonic applied modal force, Pi sinωt, plotted against the
frequency ratio β = ω/ωi .
For β = 0 the ratio is 1, the applied load is fully balanced by the
elastic resistance.
For fixed excitation frequency, β → 0 for high modal frequencies.

I dashed line,the ratio of the modal inertial force, FI ,i = −β2FS,i to
the load.

Note that for steady-state motion the sum of the elastic and inertial
force ratios is constant and equal to 1, as in

(FS,i + FI ,i) sinωt = Pi sinωt.
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I For a fixed excitation frequency and high modal frequencies the
frequency ratio β → 0.

I For β → 0 the response is quasi-static.
I Hence, for higher modes the response is pseudo-static.
I On the contrary, for excitation frequencies high enough the lower

modes respond with purely inertial forces.
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Static Correction

The preceding discussion indicates that higher modes
contributions to the response could be approximated with
the static response, leading to the idea of a Static
Correction of the dynamic response

For a system where qi(t) ≈
pi(t)

Ki
for i > ndy,

ndy being the number of dynamically responding modes,
we can write

x(t) ≈ xdy(t) + xst(t) =

ndy∑
1

ψiqi(t) +

N∑
ndy+1

ψi
pi(t)

Ki

where the response for each of the first ndy modes can be
computed as usual.



Truncation Errors,
Correction
Procedures

Giacomo Boffi

Rayleigh-Ritz
Example

Subspace iteration

How many
eigenvectors?
Modal Partecipation Factor

Dynamic magnification
factor

Static Correction

Static Correction

The preceding discussion indicates that higher modes
contributions to the response could be approximated with
the static response, leading to the idea of a Static
Correction of the dynamic response

For a system where qi(t) ≈
pi(t)

Ki
for i > ndy,

ndy being the number of dynamically responding modes,
we can write

x(t) ≈ xdy(t) + xst(t) =

ndy∑
1

ψiqi(t) +

N∑
ndy+1

ψi
pi(t)

Ki

where the response for each of the first ndy modes can be
computed as usual.



Truncation Errors,
Correction
Procedures

Giacomo Boffi

Rayleigh-Ritz
Example

Subspace iteration

How many
eigenvectors?
Modal Partecipation Factor

Dynamic magnification
factor

Static Correction

Static Modal Components

The static modal displacement component xj , j > ndy can
be written

xj(t) = ψjqj(t) ≈
ψjψ

T
j

Kj
p(t) = Fjp(t)

The modal flexibility matrix is defined by

Fj =
ψjψ

T
j

Kj

and is used to compute the j-th mode static deflections due
to the applied load vector.
The total displacements, the dynamic contributions and the
static correction, for p(t) = r f (t), are then

x ≈
ndy∑
1

ψjqj(t) + f (t)

N∑
ndy+1

Fj r.
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Alternative Formulation

Our last formula for static correction is

x ≈
ndy∑
1

ψjqj(t) + f (t)

N∑
ndy+1

Fj r.

To use the above formula all mode shapes, all modal
stiffnesses and all modal flexibility matrices must be
computed, undermining the efficiency of the procedure.
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Alternative Formulation

This problem can be obviated computing the total static
displacements and expressing it in terms of modal
contributions: xst = K−1rf (t) =

∑N
1 Fj rf (t).

Subtracting the static displacements due to the first ndy
modes to both members it is

N∑
ndy+1

Fj rf (t) = K−1rf (t)−
ndy∑
1

Fj rf (t) = f (t)

(
K−1 −

ndy∑
1

Fj

)
r.

The corrected total displacements have hence the
expression

x ≈
ndy∑
1

ψiqi(t) + f (t)

(
K−1 −

ndy∑
1

Fi

)
r,

Note that the constant term following f (t) can be
computed with information already in our possess at the
end of the dynamic analysis.
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Effectiveness of Static Correction

In these circumstances, few modes with static correction
give results comparable to the results obtained using much
more modes in a straightforward modal displacement
superposition analysis.

I An high number of modes is required to account for
the spatial distribution of the loading but only a few
lower modes are subjected to significant dynamic
amplification.

I Refined stress analysis is required even if the dynamic
response involves only a few lower modes.
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