
1 Collision
The velocity of a body falling in a constant gravitational field, disregarding air
drag, is v(t) = g t while the distance ran is s(t) = 1/2g t2 = d ⇒ t = √

2d/g,
substituting in v(t) we have that the velocity of the second body at impact is
v2 =

√
2gh.

The initial conditions of the new system with mass m = m1 +m2 are

x0 = 0

ẋ0 = v2 m2

m
= m2

m

√
2gh

by the conservation of momentum and the integral of motion, taking into account
the particular integral ξ(t) = m2 g/k, due to the static displacement associated
with the weight of the second body, is

x(t)= A cosωt+Bsinωt+m2 g/k = A cosωt+Bsinωt+∆.

Imposing the initial conditions imply

x(0)= A+m2 g/k = 0 ⇒ A =−m2 g/k =−∆
ẋ(0)=ωB = m2

m

√
2gh ⇒ B = m2

ωm

√
2gh

and the maximum displacement is

xmax =
√

A2 +B2 +∆=
√
∆2 +B2 +∆.

Substituting our previous results, with ω2 = k/m, we have

xmax(g)=
√( g m2

k

)2
+2gh

m2
2

km
+ g m2

k
.

The largest planet is Jupiter and it is gJup = 24.79ms−2, so we can plot
xmax(g) for 0 ≤ g ≤ 25ms−2 (upon substitution of all the numerical constants)
in figure 1: examination of the figure shows that we have a maximum deflection
of 60 mm for a value of g slightly less than 10 ms−2...

But we can do better, from xmax −∆=
p
∆2 +B2 we have, squaring both mem-

bers, x2
max −2xmax∆+∆2 =∆2 +B2 and, simplifying,

x2
max −2xmax∆= B2

that gives an expression that is linear in g, so that we can easily solve and have

g = 1
2

m
m2

k x2
max

m xmax +m2h
.

When we substitute all the known numerical values in the right member, we
find

g = 9.78260869565ms−2

and we can conclude that the misterious planet is the Earth.
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Figure 1: max displacement as a function of g.

2 Vibration Isolation
The requested trasmissibility ratio is TR= 400/1200 = 1/3 and for ζ= 0 it is

TR= 1
β2 −1

≤ 1
3

⇒ β2 ≥ 1+ 1
TR

⇒ β2 ≥ 4

substituting ω2
n = k/m in β2 =ω2/ω2

n it is

mω2 ≥ 4k ⇒ k ≤ mω2

4

substituting the numerical values we have

k
∣∣∣
ζ=0

= 1776528792.2Nm−1.

For ζ> 0 it is√
1+ (2ζβ)2√

(β2 −1)2 + (2ζβ)2
≤TR ⇒ TR2(β2 −1)2 + (TR2 −1)(2ζβ)2 −1≥ 0

expanding we have a disequation of 2nd degree in β2,

TR2β22 + (4ζ2TR2 −2TR2 −4ζ2)β2 +TR2 −1≥ 0

that it is verified for values of β2 external to the roots.
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Figure 2: the load during the transient.

In our case we exclude the negative root and have

β2 >
4ζ2 +2TR2 −4TR2ζ2 +

√
(4TR2ζ2 −2TR2 −4ζ2)2 +4(1−TR2)TR2

2TR2 = 4.07728835478

and it has to be, as before,

k ≤ mω2

β2 = 1742853227.55Nm−1

and eventually
c = 2ζ

p
k m = 2240405.60956Nsm−1.

3 Numerical Integration
The plot of the load during the transient is shown on figure 2, note that the
number of peaks in a unit of time varies during the transient, meaning that
during the transient the system exhibits a resonant response.

The response can be computed numerically, in terms of x(t) and ẋ(t), and the
transmitted force can subsequently be computed as

ftr(t)= k x(t)+ c ẋ(t).

In figures 3 and 4 you can see, respectively, the transmitted force in the case
of an undamped suspension and of a slightly damped suspension (ζ= 6%). As you
can see, there is a significant amplification of the transmitted force with respect
to the unbalanced load, even for the damped system.

As a non requested addendum, in the next figure, figure 5, the transmitted
force for a damped system with ζ = 15%, the transmitted force is lower, approx-
imately 50% of the ζ = 6% force, but we have more than doubled the damping
ratio.

Eventually, in figure 6 we have a comparison of the responses for different
values of the damping, it’s worth noting that, in the beginning, the responses are
very close to each other... that’s because the damping forces are proportional to
the velocity and the velocities are lower during the first phase of the transient.
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Figure 3: transmitted force, ζ= 0..
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Figure 4: transmitted force, ζ= 6%..

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t  [s]

3

2

1

0

1

2

3

k 
x
(t

) 
+

 c
 v

(t
) 

 [
kN

] ζ=15%

Figure 5: transmitted force, ζ= 15%..
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Figure 6: comparison of the transmitted forces.

4 SDOF System
The problem was solved using the following Python program

from fractions import Fraction as fr

# these functions are just placeholders to express the intent of the code
def d(v): return v
def ddot(v): return v

# the units used later
k, m, p, L, v = 1, 1, 1, 1, 1

# the springs ’ stiffnesses
k1 , k3 = k, k

# length , mass and rotatory inertia of central body
L2 = 2*L
m2 = m*L2
j2 = fr(m2*L2**2, 12)

# the rotations of the beams , in terms of the free displacement
r2 = fr(-v,L)
r1 , r3 = -r2, -r2

# the coordinates of the _interesting_ points
# the origin is in the respective CIR
xk1 , xg2 , yg2 , yk3 = 2*L, 0, L, -2*L

# the displacements of the _interesting_ points
vk1 = +r1*xk1
vg2 = +r2*xg2
ug2 = -r2*yg2
uk3 = -r3*yk3

# the virtual works of (i)nertial , (s)pring and (e)xternal forces
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vwi = -m2*ddot(ug2)*d(ug2) -m2*ddot(vg2)*d(vg2) -j2*ddot(r2)*d(r2)
vws = -k1*vk1*d(vk1) - k3*uk3*d(uk3)
vwe = +p*d(v)

print "Here␣it␣is␣the␣equation␣of␣dynamic␣equilibrium:"
print "␣␣␣%s*m*ddot(v)␣%s*k*v␣+%s*p␣=␣0"%(vwi , vws , vwe)

Executing the program above produces the following output

Here it is the equation of dynamic equilibrium:
-8/3*m*ddot(v) -8*k*v +1*p = 0

5 Rayleigh Quotient Method
Most of the problem boils down to writing the structural matrices... The mass it’s
easy

M = m

3 0 0
0 4 0
0 0 5


and the stiffness is only a bit more difficult

K = k

+2 −2 00
−2 +5 −3
00 −3 +7

 .

With x= Zφo sinωt the maximum strain energy is

V = 1
2

Z2φT
o Kφo

and the max kinetic energy is

T = 1
2
ω2Z2φT

o Mφo,

equating and solving for ω2 gives

ω2 = φT
o Kφo

φT
o Mφo

= 0.1875
k
m

We refine this result writing the max strain energy in terms of the work of the
inertial forces,

V = 1
2

(−ω2ZMφo)T (−ω2ZK−1Mφo)= 1
2

Z2ω4φT
o MK−1Mφo,

so that equating to T once more and solving for ω2 gives

ω2 = φT
o Mφo

φT
o MK−1Mφo

= 0.18616677
k
m

.

Our last approximation is obtained computing the max kinetic energy starting
from the max velocity associated to the deflections due to the inertial forces,
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vmax = Zω3K−1Mφo, and equating to the previous approximation to the max
strain energy we find

ω2 = φT
o MK−1Mφo

φT
o MK−1MK−1Mφo

= 0.18597848
k
m

.

The characteristic polinomial, with ω2 =Λ k
m , is

60Λ3 −199Λ2 +164Λ−2= 0

whose roots areΛ1 = 0.185942964024,Λ2 = 1.01840624343 andΛ3 = 2.11231745924.

6 MDOF System

M = m

2 0 0
0 1 0
0 0 1



F = 1
12

L3

EJ

11 −6 −9
−6 9 11
−9 11 16



K = 3
34

EJ
L3

23 −3 15
−3 95 −67
15 −67 63



Λ=
0.31295657

1.5504954
13.09243038



Ψ=
−0.48309956 0.51458873 −0.04258233

0.42117533 0.46008195 0.78162391
0.59652407 0.50864672 −0.62083617



qo =ΨT Mxo =
−0.96619913

1.02917745
−0.08516467



q̈1 +0.312957 q1 = 0

q̈2 +1.5505 q2 = 0

q̈3 +13.0924 q3 = 0

q1(t)=−0.966199×cos(0.559425t)
q2(t)=+1.029177×cos(1.245189t)
q3(t)=−0.085165×cos(3.618346t)

x1(t)=+0.466770cos(0.559425t)+0.529603cos(1.245189t)+0.003627cos(3.618346t)
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Figure 7: normalized horizontal displacement
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