1 Collision

The velocity of a body falling in a constant gravitational field, disregarding air
drag, is v(¢) = gt while the distance ran is s(¢) = 1/2g¢2=d = ¢=+/2d/g,
substituting in v(t) we have that the velocity of the second body at impact is
Vg = Zgh.

The initial conditions of the new system with mass m = m1 +mg are

x():O

. Lagmg ma
X0 = = ; 2gh

m

by the conservation of momentum and the integral of motion, taking into account
the particular integral {(¢) = mo g/k, due to the static displacement associated
with the weight of the second body, is

x(t) = Acoswt + Bsinwt + mg g/k = A coswt + Bsinwt + A.

Imposing the initial conditions imply

x(0)=A+mgglk=0 > A=-mgoglk=-A
“0)=wB="2\/2gh = B="2/2gh
m wm

and the maximum displacement is
*max = VAZ+B2+A=VAZ+B2+A.

Substituting our previous results, with w? = k/m, we have

mo\2 m2 m
x‘max(g):\/(gk 2) +2ghﬁ+gk 2~

The largest planet is Jupiter and it is ggup = 24.79ms ™2, so we can plot
*max(g) for 0 < g < 25ms™2 (upon substitution of all the numerical constants)
in figure 1: examination of the figure shows that we have a maximum deflection
of 60 mm for a value of g slightly less than 10ms™2...

But we can do better, from xmax — A = VA2 + B2 we have, squaring both mem-
bers, x?nax — 2%maxA + A% = A2 + B2 and, simplifying,

x?nax —2XmaxA\ = B2
that gives an expression that is linear in g, so that we can easily solve and have

1m ka2,
£75 Mo MXmax +Moh
When we substitute all the known numerical values in the right member, we
find
g =9.78260869565ms 2

and we can conclude that the misterious planet is the Earth.
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Figure 1: max displacement as a function of g.

2 Vibration Isolation

The requested trasmissibility ratio is TR = 400/1200 = ¥/3 and for { =0 it is

TR =

1 1 1
ﬁz_ls§:ﬁ2zl+ﬁ > f2=4

substituting w2 = k/m in B2 = w?/0w? it is

mw2

mw224k:'ksT

substituting the numerical values we have

k‘ = 1776528792.2Nm"".

For { >0itis

V1+(2(p)?
(B%-1%+(2(p)?

<TR = TR2(2-1)? +(TRZ - 1)(2($)*>-1=0

expanding we have a disequation of 2nd degree in 2,

TR262% + (4¢2TR? - 2TR? - 4¢2)2 + TRZ - 120

that it is verified for values of 2 external to the roots.
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Figure 2: the load during the transient.

In our case we exclude the negative root and have

472 +2TR? —4TR2% + \/ (4TR%(2 - 2TR? — 4¢2)2 + 4(1 - TR?)TR?
> TR =4.07728835478

2

and it has to be, as before,

2

k< ";‘;’ = 1742853227.55Nm"!

and eventually
c=2{VEm =2240405.60956 Nsm 1.

3 Numerical Integration

The plot of the load during the transient is shown on figure 2, note that the
number of peaks in a unit of time varies during the transient, meaning that
during the transient the system exhibits a resonant response.

The response can be computed numerically, in terms of x(¢) and x(¢), and the
transmitted force can subsequently be computed as

fur@®) = kx(®) + cx(2).

In figures 3 and 4 you can see, respectively, the transmitted force in the case
of an undamped suspension and of a slightly damped suspension ({ = 6%). As you
can see, there is a significant amplification of the transmitted force with respect
to the unbalanced load, even for the damped system.

As a non requested addendum, in the next figure, figure 5, the transmitted
force for a damped system with { = 15%, the transmitted force is lower, approx-
imately 50% of the { = 6% force, but we have more than doubled the damping
ratio.

Eventually, in figure 6 we have a comparison of the responses for different
values of the damping, it’s worth noting that, in the beginning, the responses are
very close to each other... that’s because the damping forces are proportional to
the velocity and the velocities are lower during the first phase of the transient.
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Figure 5: transmitted force, { = 15%..
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Figure 6: comparison of the transmitted forces.

4 SDOF System

The problem was solved using the following Python program

from fractions import Fraction as fr
# these functions are just placeholders to express the intent of the code
def d(v): return v

def ddot(v): return v

# the units used later
k, m, p, L, v=1,1,1, 1, 1

# the springs’ stiffnesses
ki, k3 = k, k

# length, mass and rotatory <inertia of central body

L2 = 2x*L
m2 = m*xL2
j2 = fr(m2*xL2*%x2, 12)

# the rotations of the beams, in terms of the free displacement
r2 = fr(-v,L)
rl, r3 = -r2, -r2

# the coordinates of the _interesting_ points
# the origin ts in the respective CIR
xkl, xg2, yg2, yk3 = 2xL, 0, L, -2x*L

# the displacements of the _interesting_ points
vkl = +rixxkl
vg2 = +r2*xxg2
ug2 = -r2x*yg2
uk3 = -r3*yk3

# the wvirtual works of (i)nertial, (s)pring and (e)zternal forces



vwi = -m2*ddot (ug2)*d(ug2) -m2xddot(vg2)*d(vg2) -j2*ddot(r2)*d(r2)
vws = -kil*vkl*d(vkl) - k3*uk3*d(uk3)
vwe = +px*xd(v)

print "Herepyityisgythejequationyof dynamicyequilibrium:"
print ",yu%s*m*xddot (v)hs*k*xv+%s*xp,=,0"%(vwi, vws, vwe)

Executing the program above produces the following output
Here it is the equation of dynamic equilibrium:

-8/3*mxddot (v) -8*k*v +1xp = 0

5 Rayleigh Quotient Method

Most of the problem boils down to writing the structural matrices... The mass it’s
easy

3 0 0
M=m|0 4 O
0 0 5

and the stiffness is only a bit more difficult

+2 -2 00
K=F |-2 +5 -=3].
00 -3 +7

With x = Z¢, sinwt the maximum strain energy is
— 1 2,T
V= §Z (po K(po
and the max kinetic energy is
1 o2, T
T= 3¢ Z%¢p, Mop,,
equating and solving for w? gives

T
K
w2 = Lo Bl g5k
m

oI Mo,

We refine this result writing the max strain energy in terms of the work of the
inertial forces,

1 1
V=S (-0’ZM$) (-0’ ZK ' M§,) = 5 20 o MK Mg,

so that equating to 7' once more and solving for w? gives

2 _ (rb?;M(po

k
W= = 0.18616677 —.
$TMK-TMp, m

Our last approximation is obtained computing the max kinetic energy starting
from the max velocity associated to the deflections due to the inertial forces,



Umax = Zw>K~1M ¢, and equating to the previous approximation to the max
strain energy we find

w2 = PIMK Mg,
TMK-MK-M¢,

= 0.18597848£.
m

The characteristic polinomial, with w? = A%, is
60A3 —199A2 + 164A-2=0

whose roots are A; = 0.185942964024, Ag = 1.01840624343 and Az = 2.11231745924.

6 MDOF System
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0.31295657

A= 1.5504954

13.09243038]

—0.48309956 0.51458873 —0.04258233
0.42117533 0.46008195 0.78162391
0.59652407 0.50864672 —0.62083617

Y =

-0.96619913
qo=Y"Mx,=| 1.02917745
—0.08516467

G1+0.312957q1 =0
Go+1.5505q5 =0
Gs+13.0924q3=0

q1(t) = —0.966199 x cos(0.559425¢)
q2(t) = +1.029177 x cos(1.245189¢)
q3(t) = —0.085165 x cos(3.618346¢)

x1(¢) = +0.466770 cos(0.559425%)+0.529603 cos(1.245189¢)+0.003627 cos(3.6183461¢)



z, /0

xy (t)

1.0
050
0.0FA b
—0.5F-- Mo
-1.0 I L L I
0 1 2 3 4 5
t/Ty

Figure 7: normalized horizontal displacement



