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Introduction
A periodic loading is characterized by the identity

p(t) = p(t + T )

where T is the period of the loading, and ω1 =
2π
T is its principal

frequency.

           

p

t

p(t + T )p(t)

T
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Introduction

Periodic loadings can be expressed as an infinite series of harmonic
functions using Fourier theorem, e.g., an antisymmetric loading is

p(t) = p(−t) =
∑∞

j=1 pj sin jω1t =
∑∞

j=1 pj sinωj t.

The steady-state response of a SDOF system for a harmonic loading
∆pj(t) = pj sinωj t is known; with βj = ωj/ωn it is:

xj ,s-s =
pj
k D(βj , ζ) sin(ωj t − θ(βj , ζ)).

In general, it is possible to sum all steady-state responses, the
infinite series giving the SDOF response to p(t).
Due to the asymptotic behaviour of D(β; ζ) (D goes to zero for
large, increasing β) it is apparent that a good approximation to the
steady-state response can be obtained using a limited number of
low-frequency terms.
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Fourier Series

Using Fourier theorem any practical periodic loading can be
expressed as a series of harmonic loading terms.
Consider a loading of period Tp, its Fourier series is given by

p(t) = a0 +

∞∑

j=1

aj cosωj t +
∞∑

j=1

bj sinωj t, ωj = j ω1 = j
2π
Tp

,

where the harmonic amplitude coefficients have expressions:

a0 =
1
Tp

∫Tp

0
p(t) dt, aj =

2
Tp

∫Tp

0
p(t) cosωj t dt,

bj =
2
Tp

∫Tp

0
p(t) sinωj t dt,

as, by orthogonality,
∫Tp
o p(t)cosωj dt =

∫Tp
o aj cos2ωj t dt = Tp

2 aj , etc
etc.
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Fourier Coefficients
If p(t) has not an analytical representation and must be measured
experimentally or computed numerically, we may assume that it is possible

(a) to divide the period in N equal parts ∆t = Tp/N,

(b) measure or compute p(t) at a discrete set of instants t1, t2, . . . , tN ,
with tm = m∆t,

obtaining a discrete set of values pm, m = 1, . . . ,N (note that p0 = pN by
periodicity).
Using the trapezoidal rule of integration, with p0 = pN we can write, for
example, the cosine-wave amplitude coefficients,

aj u
2∆t
Tp

N∑

m=1

pm cosωj tm

=
2
N

N∑

m=1

pm cos(jω1m∆t) =
2
N

N∑

m=1

pm cos
jm 2π
N

.

It’s worth to note that the discrete function cos jm 2π
N is periodic with

period N.
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Periodic?
Let’s start with

cos
2(n + N)π

N
= cos

(
2nπ
N

+ 2π
)

= cos
2nπ
N

,

then compute aj+N :

aj+N =
2
N

N∑

m=1

pm cos
2(j + N)mπ

N

=
2
N

N∑

m=1

pm cos
2(jm + Nm)π

N

=
2
N

N∑

m=1

pm cos
(
2jmπ
N

+ 2mπ
)

=
2
N

N∑

m=1

pm cos
2 jm π
N

= aj
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Exponential Form
The Fourier series can also be written in terms of exponentials of
imaginary argument,

p(t) =
∞∑

j=−∞
Pj exp iωj t

where the complex amplitude coefficients are given by

Pj =
1
Tp

∫Tp

0
p(t) exp iωj t dt, j = −∞, . . . ,+∞.

For a sampled pm we can write, using the trapezoidal integration
rule and substituting tm = m∆t = mTp/N, ωj = j 2π/Tp:

Pj u
1
N

N∑

m=1

pm exp(−i
2π j m
N

),



SDOF linear
oscillator

Giacomo Boffi

Response to
Periodic Loading
Introduction
Fourier Series
Representation
Fourier Series of
the Response
An example

Fourier
Transform

The Discrete
Fourier
Transform

Response to
General Dynamic
Loadings

Undamped Response
We have seen that the steady-state response to the jth sine-wave
harmonic can be written as

xj =
bj
k

[
1

1− β2j

]
sinωj t, βj = ωj/ωn,

analogously, for the jth cosine-wave harmonic,

xj =
aj
k

[
1

1− β2j

]
cosωj t.

Finally, we write

x(t) =
1
k



a0 +

∞∑

j=1

[
1

1− β2j

]
(aj cosωj t + bj sinωj t)



 .
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Damped Response

In the case of a damped oscillator, we must substitute the steady
state response for both the jth sine- and cosine-wave harmonic,

x(t) =
a0
k

+
1
k

∞∑

j=1

+(1− β2j ) aj − 2ζβj bj

(1− β2j )2 + (2ζβj)2
cosωj t+

+
1
k

∞∑

j=1

+2ζβj aj + (1− β2j ) bj
(1− β2j )2 + (2ζβj)2

sinωj t.

As usual, the exponential notation is neater,

x(t) =
∞∑

j=−∞

Pj

k

exp iωj t

(1− β2j ) + i (2ζβj)
.

SDOF linear
oscillator

Giacomo Boffi

Response to
Periodic Loading
Introduction
Fourier Series
Representation
Fourier Series of
the Response
An example

Fourier
Transform

The Discrete
Fourier
Transform

Response to
General Dynamic
Loadings

Example
As an example, consider the loading p(t) = max{p0 sin 2πt

Tp
, 0}

a0 =
1
Tp

∫Tp/2

0
po sin

2πt
Tp

dt =
p0
π
,

aj =
2
Tp

∫Tp/2

0
po sin

2πt
Tp

cos
2πjt
Tp

dt =

{
0 for j odd
p0
π

[
2

1−j2

]
for j even,

bj =
2
Tp

∫Tp/2

0
po sin

2πt
Tp

sin
2πjt
Tp

dt =

{
p0
2 for j = 1
0 for n > 1.
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Example cont.
Assuming β1 = 3/4, from
p = p0

π

(
1+ π

2 sinω1t −
2
3 cos 2ω1t −

2
15 cos 4ω2t − . . .

)
with the

dynamic amplifiction factors

D1 =
1

1− (1 3
4 )

2
=

16
7
,

D2 =
1

1− (2 3
4 )

2
= −

4
5
,

D4 =
1

1− (4 3
4 )

2
= −

1
8
, D6 = . . .

etc, we have

x(t) =
p0

kπ

(
1+

8π
7

sinω1t +
8
15

cos 2ω1t +
1
60

cos 4ω1t + . . .

)

Take note, these solutions are particular solutions! If your solution has to
respect given initial conditions, you must consider also the homogeneous
solution.
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Example cont.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  1  2  3

x
(t

) 
k 
π
 /

 p
o

t/Tp

xi = Σj=1,..,i aj cosωjt + bj sinωjt

x0
x1
x2
x4
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Non periodic loadings
It is possible to extend the Fourier analysis to non periodic loading.
Let’s start from the Fourier series representation of the load p(t),

p(t) =
+∞∑

−∞
Pr exp(iωr t), ωr = r∆ω, ∆ω =

2π
Tp

,

introducing P(iωr ) = PrTp and substituting,

p(t) =
1
Tp

+∞∑

−∞
P(iωr ) exp(iωr t) =

∆ω

2π

+∞∑

−∞
P(iωr ) exp(iωr t).

Due to periodicity, we can modify the extremes of integration in the
expression for the complex amplitudes,

P(iωr ) =

∫+Tp/2

−Tp/2
p(t) exp(−iωr t) dt.
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Non periodic loadings (2)

If the loading period is extended to infinity to represent the non-periodicity of
the loading (Tp →∞) then (a) the frequency increment becomes infinitesimal
(∆ω = 2π

Tp
→ dω) and (b) the discrete frequency ωr becomes a continuous

variable, ω.
In the limit, for Tp →∞ we can then write

p(t) =
1
2π

∫+∞

−∞
P(iω) exp(iωt) dω

P(iω) =

∫+∞

−∞
p(t) exp(−iωt) dt,

which are known as the inverse and the direct Fourier Transforms, respectively,
and are collectively known as the Fourier transform pair.
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SDOF Response

In analogy to what we have seen for periodic loads, the response of a damped
SDOF system can be written in terms of H(iω), the complex frequency response
function,

x(t) =
1
2π

∫+∞

−∞
H(iω)P(iω) exp iωt dt, where

H(iω) =
1
k

[
1

(1− β2) + i(2ζβ)

]
=

1
k

[
(1− β2) − i(2ζβ)
(1− β2)2 + (2ζβ)2

]
, β =

ω

ωn
.

To obtain the response through frequency domain, you should evaluate the
above integral, but analytical integration is not always possible, and when it is
possible, it is usually very difficult, implying contour integration in the complex
plane (for an example, see Example E6-3 in Clough Penzien).
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Discrete Fourier Transform

To overcome the analytical difficulties associated with the inverse Fourier
transform, one can use appropriate numerical methods, leading to good
approximations.
Consider a loading of finite period Tp, divided into N equal intervals ∆t = Tp/N,
and the set of values ps = p(ts) = p(s∆t).
We can approximate the complex amplitude coefficients with a sum,

Pr =
1
Tp

∫Tp

0
p(t) exp(−iωr t) dt, that, by trapezoidal rule, is

u
1

N∆t

(
∆t

N−1∑

s=0

ps exp(−iωr ts)

)
=

1
N

N−1∑

s=0

ps exp(−i
2πrs
N

).
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Discrete Fourier Transform (2)

In the last two passages we have used the relations
pN = p0, exp(iωr tN) = exp(ir∆ωTp) = exp(ir2π) = exp(i0)

ωr ts = r∆ω s∆t = rs
2π
Tp

Tp

N
=

2π rs
N

.

Take note that the discrete function exp(−i 2πrs
N

), defined for integer r , s is
periodic with period N, implying that the complex amplitude coefficients are
themselves periodic with period N.

Pr+N = Pr

Starting in the time domain with N distinct complex numbers, ps , we have found
that in the frequency domain our load is described by N distinct complex
numbers, Pr , so that we can say that our function is described by the same
amount of information in both domains.
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Aliasing

Only N/2 distinct frequencies
(
∑N−1

0 =
∑+N/2

−N/2) contribute
to the load representation, what
if the frequency content of the
loading has contributions from
frequencies higher than ωN/2?
What happens is aliasing, i.e.,
the upper frequencies contribu-
tions are mapped to contribu-
tions of lesser frequency. -1

-0.5

 0

 0.5

 1

0 1/4 Tp

sin(21 * (2π)/Tp * s Tp/N), N=20, s=0,..,20
sin(22 * (2π)/Tp * s Tp/N), N=20, s=0,..,20

See the plot above: the contributions from the high frequency sines, when
sampled, are indistinguishable from the contributions from lower frequency
components, i.e., are aliased to lower frequencies!

SDOF linear
oscillator

Giacomo Boffi

Response to
Periodic Loading

Fourier
Transform

The Discrete
Fourier
Transform
The Discrete
Fourier Transform
Aliasing
The Fast Fourier
Transform

Response to
General Dynamic
Loadings

Aliasing (2)

I The maximum frequency that can be described in the DFT is
called the Nyquist frequency, ωNy =

1
2
2π
∆t .

I It is usual in signal analysis to remove the signal’s higher
frequency components preprocessing the signal with a filter or a
digital filter.

I It is worth noting that the resolution of the DFT in the
frequency domain for a given sampling rate is proportional to
the number of samples, i.e., to the duration of the sample.
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The Fast Fourier Transform

The operation count in a DFT is in the order of N2.
A Fast Fourier Transform is an algorithm that reduces the number of
arithmetic operations needed to compute a DFT.
The first and simpler FFT algorithm is the Decimation in Time
algorithm by Cooley and Tukey (1965).
The algorithm introduced by Cooley and Tukey is quite complex
because it allows to proceed without additional memory, we will
describe a different algorithm, that is based on the same principles
but requires additional memory and it’s rather simpler than the
original one.
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Decimation in Time DFT
For simplicity, assume that N is even and split the DFT summation
in two separate sums, with even and odd indices

Xr =

N−1∑

s=0

xse
− 2πi

N sr , r = 0, . . . ,N − 1

=

N/2−1∑

q=0

x2qe
− 2πi

N (2q)r +

N/2−1∑

q=0

x2q+1e
− 2πi

N (2q+1)r .

Collecting e−
2πi
N r in the second term and letting 2q

N = q
N/2 , we have

Xr =

N/2−1∑

q=0

x2qe
− 2πi

N/2qr + e−
2πi
N r

N/2−1∑

q=0

x2q+1e
− 2πi

N/2qr ,

i.e., we have two DFT’s of length N/2. The operations count is just
2(N/2)2 = N2/2, but we have to combine these two halves in the
full DFT.
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Decimation in Time DFT

Say that
Xr = Er + e−

2πi
N rOr

where Er and Or are the even and odd half-DFT’s, of which we computed only
coefficients from 0 to N/2− 1.
To get the full sequence we have to note that

1. the E and O DFT’s are periodic with period N/2, and

2. exp(−2πi(r + N/2)/N) = e−πi exp(−2πir/N) = − exp(−2πir/N),

so that we can write

Xr =

{
Er + exp(−2πir/N)Or if r < N/2,
Er−N/2 − exp(−2πir/N)Or−N/2 if r > N/2.

The algorithm that was outlined can be applied to the computation of each of
the half-DFT’s when N/2 were even, so that the operation count goes to N2/4.
If N/4 were even ...
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Pseudocode for CT algorithm

def fft2(X, N):
if N = 1 then

Y = X
else

Y0 = fft2(X0, N/2)
Y1 = fft2(X1, N/2)
for k = 0 to N/2-1

Y_k = Y0_k + exp(2 pi i k/N) Y1_k
Y_(k+N/2) = Y0_k - exp(2 pi i k/N) Y1_k

endfor
endif

return Y
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f rom cmath impo r t exp , p i

de f d_f f t ( x , n ) :
""" D i r e c t f f t o f x , a l i s t o f n=2∗∗m complex v a l u e s """
r e t u r n f f t ( x , n , [ exp (−2∗ p i ∗1 j ∗k/n ) f o r k i n r ange ( n / 2 ) ] )

de f i _ f f t ( x , n ) :
""" I n v e r s e f f t o f x , a l i s t o f n=2∗∗m complex v a l u e s """
t r an s f o rm = f f t ( x , n , [ exp (+2∗ p i ∗1 j ∗k/n ) f o r k i n r ange ( n / 2 ) ] ) ]
r e t u r n [ x/n f o r x i n t r an s f o rm ]

de f f f t ( x , n , tw ) :
""" Dec imat ion i n Time FFT , to be c a l l e d by d_f f t and i _ f f t .
x i s the s i g n a l to t rans fo rm , a l i s t o f complex v a l u e s
n i s i t s l eng th , r e s u l t s a r e unde f i n ed i f n i s not a power o f 2
tw i s a l i s t o f tw i d d l e f a c t o r s , precomputed by the c a l l e r

r e t u r n s a l i s t o f complex va l u e s , to be no rma l i z ed i n ca se o f an
i n v e r s e t r an s f o rm """

i f n == 1 : r e t u r n x # bottom reached , DFT o f a l e n g t h 1 vec x i s x

# c a l l f f t w i th the even and the odd c o e f f i c i e n t s i n x
# the r e s u l t s a r e the so c a l l e d even and odd DFT ’ s
e , o = f f t ( x [ 0 : : 2 ] , n /2 , tw [ : : 2 ] ) , f f t ( x [ 1 : : 2 ] , n /2 , tw [ : : 2 ] )

# assemb le the p a r t i a l r e s u l t s :
# 1 s t h a l f o f f u l l DFT i s put i n even DFT, 2nd h a l f i n odd DFT
f o r k i n r ange ( n / 2 ) :

e [ k ] , o [ k ] = e [ k]+tw [ k ]∗ o [ k ] , e [ k]−tw [ k ]∗ o [ k ]

# conca t ena t e the two h a l v e s o f the DFT and r e t u r n to c a l l e r
r e t u r n e + o
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Dynamic Response (1)
To evaluate the dynamic response of a linear SDOF system in the
frequency domain, use the inverse DFT,

xs =
N−1∑

r=0

Vr exp(i
2π rs
N

), s = 0, 1, . . . ,N − 1

where Vr = Hr Pr . Pr are the discrete complex amplitude coefficients
computed using the direct DFT, and Hr is the discretization of the
complex frequency response function, that for viscous damping is

Hr =
1
k

[
1

(1− β2
r ) + i(2ζβr )

]
=

1
k

[
(1− β2

r ) − i(2ζβr )

(1− β2
r )

2 + (2ζβr )2

]
, βr =

ωr

ωn
.

while for hysteretic damping it is

Hr =
1
k

[
1

(1− β2
r ) + i(2ζ)

]
=

1
k

[
(1− β2

r ) − i(2ζ)
(1− β2

r )
2 + (2ζ)2

]
.
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Dynamic Response (2)

Some word of caution...
If you’re going to approach the application of the complex frequency
response function without proper concern, you’re likely to be hurt.
Let’s say ∆ω = 1.0, N = 32, ωn = 3.5 and r = 30, what do you think it is
the value of β30? If you are thinking β30 = 30∆ω/ωn = 30/3.5 ≈ 8.57
you’re wrong!

Due to aliasing, ωr =

{
r∆ω r 6 N/2
(r − N)∆ω r > N/2

,

note that in the upper part of the DFT the coefficients correspond to
negative frequencies and, staying within our example, it is
β30 = (30− 32)× 1/3.5 ≈ −0.571.
If N is even, PN/2 is the coefficient corresponding to the Nyquist
frequency, if N is odd P N−1

2
corresponds to the largest positive frequency,

while P N+1
2

corresponds to the largest negative frequency.
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Response to a short duration load

An approximate procedure to evaluate the maximum displacement
for a short impulse loading is based on the impulse-momentum
relationship,

m∆ẋ =

∫ t0
0
[p(t) − kx(t)] dt.

When one notes that, for small t0, the displacement is of the order
of t20 while the velocity is in the order of t0, it is apparent that the
kx term may be dropped from the above expression, i.e.,

m∆ẋ u
∫ t0
0
p(t) dt.
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Response to a short duration load

Using the previous approximation, the velocity at time t0 is

ẋ(t0) =
1
m

∫ t0
0
p(t) dt,

and considering again a negligibly small displacement at the end of
the loading, x(t0) u 0, one has

x(t − t0) u
1

mωn

∫ t0
0
p(t) dt sinωn(t − t0).

Please note that the above equation is exact for an infinitesimal
impulse loading.

dx(t − τ) =
p(τ) dτ

mωn
sinωn(t − τ), t > τ,
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Undamped SDOF

For an infinitesimal impulse, the impulse-momentum is exactly
p(τ) dτ and the response is

dx(t − τ) =
p(τ) dτ

mωn
sinωn(t − τ), t > τ,

and to evaluate the response at time t one has simply to sum all the
infinitesimal contributions for τ < t,

x(t) =
1

mωn

∫ t

0
p(τ) sinωn(t − τ) dτ, t > 0.

This relation is known as the Duhamel integral, and tacitly depends
on initial rest conditions for the system.

Jean-Marie Constant Duhamel (Saint-Malo, 5 February 1797 — Paris, 29 April 1872)
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Damped SDOF

The derivation of the equation of motion for a generic load is
analogous to what we have seen for undamped SDOF, the
infinitesimal contribution to the response at time t of the load at
time τ is

dx(t) =
p(τ)

mωD
dτ sinωD(t − τ) exp(−ζωn(t − τ)) t > τ

and integrating all infinitesimal contributions one has

x(t) =
1

mωD

∫ t

0
p(τ) sinωD(t − τ) exp(−ζωn(t − τ)) dτ, t > 0.
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Evaluation of Duhamel integral, undamped

Using the trig identity

sin(ωnt −ωnτ) = sinωnt cosωnτ− cosωnt sinωnτ

the Duhamel integral is rewritten as

x(t) =

∫t
0 p(τ) cosωnτ dτ

mωn
sinωnt −

∫t
0 p(τ) sinωnτ dτ

mωn
cosωnt

= A(t) sinωnt −B(t) cosωnt

where {
A(t) = 1

mωn

∫t
0 p(τ) cosωnτ dτ

B(t) = 1
mωn

∫t
0 p(τ) sinωnτ dτ
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Numerical evaluation of Duhamel integral, undamped

Usual numerical procedures can be applied to the evaluation of A
and B, e.g., using the trapezoidal rule, one can have, with
An = A(n∆τ), yn = p(n∆τ) cos(n∆τ) and zn = p(n∆τ) sin(n∆τ) we
can write

An+1 = An +
∆τ

2mωn
(yn + yn+1) ,

Bn+1 = Bn +
∆τ

2mωn
(zn + zn+1) .
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Evaluation of Duhamel integral, damped

For a damped system, it can be shown that

x(t) = A(t) sinωDt −B(t) cosωDt

with

A(t) =
1

mωD

∫ t

0
p(τ)

exp ζωnτ

exp ζωnt
cosωDτ dτ,

B(t) =
1

mωD

∫ t

0
p(τ)

exp ζωnτ

exp ζωnt
sinωDτ dτ.
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Numerical evaluation of Duhamel integral, damped

Numerically, using e.g. Simpson integration rule and
yn = p(n∆τ) cosωDτ,

An+2 = An exp(−2ζωn∆τ)+

∆τ

3mωD
[yn exp(−2ζωn∆τ) + 4yn+1 exp(−ζωn∆τ) + yn+2]

n = 0, 2, 4, · · ·

(You can write a similar relationship for Bn+2)
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Transfer Functions

The response of a linear SDOF system to arbitrary loading can be
evaluated by a convolution integral in the time domain,

x(t) =

∫ t

0
p(τ) h(t − τ) dτ,

with the unit impulse response function
h(t) = 1

mωD
exp(−ζωnt) sin(ωDt), or through the frequency

domain using the Fourier integral

x(t) =

∫+∞

−∞
H(ω)P(ω) exp(iωt) dω,

where H(ω) is the complex frequency response function.

SDOF linear
oscillator

Giacomo Boffi

Response to
Periodic Loading

Fourier
Transform

The Discrete
Fourier
Transform

Response to
General Dynamic
Loadings
Response to
infinitesimal
impulse
Numerical
integration of
Duhamel integral
Relationship
between time and
frequency domain

Transfer Functions

These response functions, or transfer functions, are connected by the
direct and inverse Fourier transforms:

H(ω) =

∫+∞

−∞
h(t) exp(−iωt) dt,

h(t) =
1
2π

∫+∞

−∞
H(ω) exp(iωt) dω.
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Relationship of transfer functions

We write the response and its Fourier transform:

x(t) =

∫ t

0
p(τ)h(t − τ) dτ =

∫ t

−∞
p(τ)h(t − τ) dτ

X (ω) =

∫+∞

−∞

[∫ t

−∞
p(τ)h(t − τ) dτ

]
exp(−iωt) dt

the lower limit of integration in the first equation was changed from
0 to −∞ because p(τ) = 0 for τ < 0, and since h(t − τ) = 0 for
τ > t, the upper limit of the second integral in the second equation
can be changed from t to +∞,

X (ω) = lim
s→∞

∫+s

−s

∫+s

−s
p(τ)h(t − τ) exp(−iωt) dt dτ
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Relationship of transfer functions

Introducing a new variable θ = t − τ we have

X (ω) = lim
s→∞

∫+s

−s
p(τ) exp(−iωτ) dτ

∫+s−τ

−s−τ
h(θ) exp(−iωθ) dθ

with lim
s→∞

s − τ =∞, we finally have

X (ω) =

∫+∞

−∞
p(τ) exp(−iωτ) dτ

∫+∞

−∞
h(θ) exp(−iωθ) dθ

= P(ω)

∫+∞

−∞
h(θ) exp(−iωθ) dθ

where we have recognized that the first integral is the Fourier
transform of p(t).
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Relationship of transfer functions

Our last relation was

X (ω) = P(ω)

∫+∞

−∞
h(θ) exp(−iωθ) dθ

but X (ω) = H(ω)P(ω), so that, noting that in the above equation
the last integral is just the Fourier transform of h(θ), we may
conclude that, effectively, H(ω) and h(t) form a Fourier transform
pair.


