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A periodic loading is characterized by the identity

p(t)=p(t+T)

Introduction

where T is the period of the loading, and w; = QT” is its principal
frequency.
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Periodic loadings can be expressed as an infinite series of harmonic
functions using Fourier theorem, e.g., an antisymmetric loading is

Introduction

p(t) = p(—t) = 3 2, pjsinjwit =3 72, pjsin w;t.

The steady-state response of a SDOF system for a harmonic loading
Apj(t) = pjsinw;jt is known; with 3; = w;/w, it is:

Xjss = ZD(Bj, Q) sin(w;t — O(Bj, C)).

In general, it is possible to sum all steady-state responses, the
infinite series giving the SDOF response to p(t).

Due to the asymptotic behaviour of D(f3; () (D goes to zero for
large, increasing f3) it is apparent that a good approximation to the
steady-state response can be obtained using a limited number of
low-frequency terms.
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Using Fourier theorem any practical periodic loading can be
expressed as a series of harmonic loading terms.
Consider a loading of period T,, its Fourier series is given by ity
Representation
[o¢] o0 27_[ P
p(t) =ag + Z ajcoswjt + Z bjsinwjt, wj=jw;=j—,

T
j=1 j=1 P

where the harmonic amplitude coefficients have expressions:

! JT" (t) d 2 (" o) d
as=— | p(t)dt, a-:—J p(t) cosw;t dt,
Tp 0 J Tp 0 J

2 (e
by = —J p(t) sinw;t dt,
To Jo

as, by orthogonality, foT" p(t)cosw; dt = foT" ajcos® w;tdt = %aj, etc
etc.




Fourier Coefficients e

oscillator

If p(t) has not an analytical representation and must be measured Giacomo Boffi
experimentally or computed numerically, we may assume that it is possible

(a) to divide the period in N equal parts At = T,/N,

(b) measure or compute p(t) at a discrete set of instants ty, to, ..., ty, Remreemeation
with t,, = mAt,

obtaining a discrete set of values p,,, m=1,..., N (note that pp = py by

periodicity).

Using the trapezoidal rule of integration, with pg = py we can write, for
example, the cosine-wave amplitude coefficients,

2At
= — mecoswjtm

pml

2 & P jm2m
=N Z pmcos(jwimAt) = N Z m COS = —.
m=1 m=1
It's worth to note that the discrete function cosfm% is periodic with
period N.
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Let's start with Giacomo Boffi

Fourier Series
Representation

then compute ajp:

N .
2 2(j+ N)mm
AN = N mZZI Pm €OS - N
2 & 2(jm + Nm)m
=N ,; Pm COS — N
N .
2 2jmTt
-N Z Pm COS <% +2m7'c>
m=1
2 2jmm
=N Z Prm COS N aj
m=1
Exponential Form S osdiliater
The Fourier series can also be written in terms of exponentials of Giacomo Boffi
imaginary argument,
0 - -
)= 5 Pepiwjt Founce st

where the complex amplitude coefficients are given by

1 (T
P; = J p(t)expiw;t dt, Jj=—00,...,+00.
To Jo

For a sampled p,,, we can write, using the trapezoidal integration
rule and substituting t,, = mAt =m T,/N, w; = j 27/ T:

N 27'(jm
P Z )
m=1




Undamped Response

We have seen that the steady-state response to the jth sine-wave
harmonic can be written as

b; 1 .
Xj:f ll_ﬁ2] sinw;t, Bj = wj/wn,
J
analogously, for the jth cosine-wave harmonic,

o
XJ:i PEY) COS(.th.
k |1- 3

Finally, we write

1 oo
X(t):; 30"‘;
J:

[52] (aj cosw;jt + bjsin w;t)
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Fourier Series of
the Response

Damped Response

In the case of a damped oscillator, we must substitute the steady
state response for both the jth sine- and cosine-wave harmonic,

ao 1 ad 1_ '_QC[S] )
x( ?—i- J_Zl (2C[3]) cos w;t+
—|—2C[31 aj —{32)

Tk Z + (20B;)?

As usual, the exponential notation is neater,

expiwjt

71
Z k 1—[52 ) +i(2¢B))

sin wjt.
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Fourier Series of
the Response

Example
As an example, consider the loading p(t) = max{pg sin 2%: 0}

a 1 [T sin 2mt dt Po
= — | —_— = —,
Tl P -
2 (/2 om 27th 1 0 for j odd
aj=— sin — co t=
T Ty lo Po T, To B [1—21'2} for j even,
2 (Te/? ont . 2omjt 2 forj=1
b = — sin — sin —— dt =< 2
T T o Po Tp To 0 forn>1.
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An example




Example cont.

Assuming (31 = 3/4, from
p= p—; (1 + Ssinwit — %coslet — % cosdwot — .. ) with the
dynamic amplifiction factors
1 16
D]. - 3 = -
1—(13)2 7
1 4
D2 - 3 =
1-(232 5
1 1
— 2, Dg=

etc, we have

ke 7 15

8 8 1
x(t) = Po 1+j5inw1t+—cos2w1t+—cos4w1t+...
kTt 60

Take note, these solutions are particular solutions! If your solution has to
respect given initial conditions, you must consider also the homogeneous

solution.
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An example

Example cont.

Xj = Zj=1,..,i 3j Coswjt + bj sinw;t

Ty

5 T T
PaiN N N X0
| - P, 4 - -
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An example

Outline of Fourier transform

Fourier Transform
Extension of Fourier Series to non periodic functions
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Non periodic loadings

It is possible to extend the Fourier analysis to non periodic loading.
Let's start from the Fourier series representation of the load p(t),
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Non periodic loadings (2)

If the loading period is extended to infinity to represent the non-periodicity of
the loading (T, — o0) then (a) the frequency increment becomes infinitesimal

(Aw = % — dw) and (b) the discrete frequency w, becomes a continuous

+o0 o
p(t) = Z Prexp(iw,t), w,=rAw, Aw=—,
TP Extension of
- Fourier Series to
Rometions €
introducing P(iw,) = P, T, and substituting,
1 +o00 Aw +oo
p(t) = ?p é Pliw,)exp(iw,t) = o é Pliw,)exp(iw,t).
Due to periodicity, we can modify the extremes of integration in the
expression for the complex amplitudes,
+Tp/2
Pliw,) = J' p(t) exp(—iw,t) dt.
—T,/2
SDOF linear
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Extension of
Fourier Series to
non periodic

SDOF Response

In analogy to what we have seen for periodic loads, the response of a damped
SDOF system can be written in terms of H(iw), the complex frequency response

function,

+o0
x(t) = iJ H(iw) P(iw)expiwtdt, where

. 1 1 1] (1—p%) —i(2ep) w
H(I(U)Ifz— :7ﬁ’ Bzi
k [(1—p2)+i(2¢B) k [(1—p2)*+(2¢B) wh
To obtain the response through frequency domain, you should evaluate the
above integral, but analytical integration is not always possible, and when it is
possible, it is usually very difficult, implying contour integration in the complex
plane (for an example, see Example E6-3 in Clough Penzien).

variable, w. finctions
In the limit, for T, — oo we can then write
1 +00
t)= — P(iw)exp(iwt) dw
ple) = 5= | Pliw) explion
+oo
P(iw)zJ p(t) exp(—iwt) dt,
—00
which are known as the inverse and the direct Fourier Transforms, respectively,
and are collectively known as the Fourier transform pair.
SDOF linear
oscillator
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Response in the
Frequency
Domain
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To overcome the analytical difficulties associated with the inverse Fourier

transform, one can use appropriate numerical methods, leading to good

approximations.

Consider a loading of finite period T, divided into N equal intervals At = T,/N,

and the set of values p;, = p(t;) = p(sAt). The Discrete
We can approximate the complex amplitude coefficients with a sum, Fourier Transform

1 (T
P, = —J p(t)exp(—iw,t)dt, that, by trapezoidal rule, is

T, Jo
N—1 N—1
1 1 2mrs
4 NAt( t;:o ps exp( ’wrts)> N;:o psexp(—i N )
Discrete Fourier Transform (2) oitor

Giacomo Boffi

In the last two passages we have used the relations
PN =po, expliw,ty) =exp(irAwT,) = exp(ir2m) = exp(i0)
2n T, 2mrs

w,tS:rAwsAt:rs?pW =N

. . . . . . he Di
Take note that the discrete function exp(—i232), defined for integer r, s is R

periodic with period N, implying that the complex amplitude coefficients are

themselves periodic with period N.
PH»N =P,

Starting in the time domain with N distinct complex numbers, p;, we have found
that in the frequency domain our load is described by N distinct complex
numbers, P,, so that we can say that our function is described by the same
amount of information in both domains.




Aliasing

Only N/2 distinct frequencies
(Z(’)\’fl = th;g) contribute
to the load representation, what
if the frequency content of the
loading has contributions from
frequencies higher than wy»?

Sin(21 * (2T0/T, * s T,/N), N=;
sin(22 * (2T0/Tp * s Ty/N), N=:

20, 5=0,..,20 —+—
20, =0,..,20 ---x---

X

SDOF linear
oscillator

Giacomo Boffi

What happens is aliasing, i.e., \ Aliasing
the upper frequencies contribu- *° F
tions are mapped to contribu- /
tions of lesser frequency. *

0 lll‘lTD
See the plot above: the contributions from the high frequency sines, when
sampled, are indistinguishable from the contributions from lower frequency
components, i.e., are aliased to lower frequencies!

SDOF linear

Aliasing (2)

» The maximum frequency that can be described in the DFT is

called the Nyquist frequency, wyy

12n
2 At

» It is usual in signal analysis to remove the signal’s higher

frequency components preprocessing the signal with a filter or a

oscillator
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Aliasing
digital filter.
» It is worth noting that the resolution of the DFT in the
frequency domain for a given sampling rate is proportional to
the number of samples, i.e., to the duration of the sample.
SDOF linear

The Fast Fourier Transform

The operation count in a DFT is in the order of N2.

A Fast Fourier Transform is an algorithm that reduces the number of

arithmetic operations needed to compute a DFT.
The first and simpler FFT algorithm is the Decimation in Time

algorithm by Cooley and Tukey (1965).

The algorithm introduced by Cooley and Tukey is quite complex
because it allows to proceed without additional memory, we will
describe a different algorithm, that is based on the same principles
but requires additional memory and it's rather simpler than the

original one.

oscillator

Giacomo Boffi
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Decimation in Time DFT

For simplicity, assume that N is even and split the DFT summation
in two separate sums, with even and odd indices

N—1 _
Xr:sze’%sr, r=0,.... N—1
s=0
N/2—1 N/2—1
B AP R e
q=0 q=0

. 27, . .
Collecting e~ %' " in the second term and letting %q = §73. We have

N/2—1 N/2—1

_ 27 2mi _2mi

r — 27U r

X, = E Xoq€ L7 E Xog+1€ Nz
q=0 q=0

i.e., we have two DFT's of length /2. The operations count is just
2(N/2)? = N?/2, but we have to combine these two halves in the
full DFT.
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The Fast Fourier
Transform

Decimation in Time DFT

Say that '
Xr = Er + e—%ror
where E, and O, are the even and odd half-DFT's, of which we computed only
coefficients from 0 to N/2 — 1.
To get the full sequence we have to note that

1. the E and O DFT's are periodic with period N/2, and
2. exp(—2mi(r + N/2)/N) = e ™ exp(—2mir/N) = — exp(—2mir/N),

so that we can write

X — E, + exp(—2mir/N)O, if r<N/2,
" Ernj2 —exp(=2mir/N)O, _ns2 if r = N/2.
The algorithm that was outlined can be applied to the computation of each of

the half-DFT's when N/2 were even, so that the operation count goes to N?/4.
If N/4 were even ...
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The Fast Fourier
Transform

Pseudocode for CT algorithm

def fft2(X, N):
if N = 1 then

Y =X

else
YO = £ft2(X0, N/2)
Y1 = ££f£2(X1, N/2)

for k = 0 to N/2-1
Y_k = YO_k + exp(2 pi i k/N) Y1 _k
Y_(k+N/2) YO_k - exp(2 pi i k/N) Y1_k
endfor
endif
return Y

SDOF linear
oscillator
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from cmath import exp, pi

def d_fft(x,n):
""MPDirect fft of x, a list of n=2xxm complex values"""
return fft(x,n,[exp(—2xpix*lj*xk/n) for k in range(n/2)])

def i fft(x,n):
" lnverse fft of x, a list of n=2xxm complex values"""
transform = fft(x,n,[exp(+2+pi*lj*xk/n) for k in range(n/2)])]
return [x/n for x in transform]

def fft(x, n, tw):
"""Decimation in Time FFT, to be called by d fft and i fft.

X is the signal to transform, a list of complex values
n is its length, results are undefined if n is not a power of 2
tw is a list of twiddle factors, precomputed by the caller

returns a list of complex values, to be normalized in case of an
wnn

SDOF linear
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The Fast Fourier

inverse transform Transform
if n = 1: return x # bottom reached, DFT of a length 1 vec x is x
# call fft with the even and the odd coefficients in x
# the results are the so called even and odd DFT's
e, o= fft(x[0::2], n/2, tw[::2]), fft(x[1::2], n/2, tw[::2])
# assemble the partial results:
# 1st half of full DFT is put in even DFT, 2nd half in odd DFT
for k in range(n/2):
e[k], o[k] = e[k]+tw[k]xo[k], e[k]l—tw[k]*o[k]
# concatenate the two halves of the DFT and return to caller
return e + o
H SDOF linear
Dynamic Response (1) osclator

To evaluate the dynamic response of a linear SDOF system in the
frequency domain, use the inverse DFT,

N—1

2
XS:ZOV,exp(i 7;\/’5), s=0,1,...,N—1

where V, = H, P,. P, are the discrete complex amplitude coefficients
computed using the direct DFT, and H, is the discretization of the
complex frequency response function, that for viscous damping is

1 1 } 1 { (1—PB3) —i(2¢B,) } w,
k [(1—p2)+i(2¢B,)]  k [(1—p2)2+(2¢B,)2]" '

H =

k

while for hysteretic damping it is

H =

1 ;} _ 1 {(1(52)'(25)}
kla=B)+i20] ~ k [A-p22+(207]

Giacomo Boffi

The Fast Fourier
Transform

Dynamic Response (2)

Some word of caution...

If you're going to approach the application of the complex frequency
response function without proper concern, you're likely to be hurt.

Let's say Aw =1.0, N =32, w, = 3.5 and r = 30, what do you think it is
the value of B3¢? If you are thinking 30 = 30 Aw/w, = 30/3.5 ~ 8.57
you're wrong!

rAw r<N/2

(r—N)Aw r>N/2'

note that in the upper part of the DFT the coefficients correspond to
negative frequencies and, staying within our example, it is

[330 = (30 — 32) X 1/3.5 ~ —0.571.

If N is even, Py, is the coefficient corresponding to the Nyquist
frequency, if N is odd P% corresponds to the largest positive frequency,
while P% corresponds to the largest negative frequency.

Due to aliasing, w, =

SDOF linear
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The Fast Fourier
Transform
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An approximate procedure to evaluate the maximum displacement
for a short impulse loading is based on the impulse-momentum

relationship,
to

mAx = J [p(t) — kx(t)] dt.
0
When one notes that, for small ty, the displacement is of the order

2 . . I - Response to
of t5 while the velocity is in the order of tg, it is apparent that the infinitesimal
kx term may be dropped from the above expression, i.e.,

to
mAx = J p(t) dt.
0

Response to a short duration load S osdiliater
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Using the previous approximation, the velocity at time tg is

X(t0) = ij°p(t) dat,

m Jo

and considering again a negligibly small displacement at the end of
the loading, x(tp) = 0, one has

x(t—tg) &=

to
J p(t) dt sinw,(t — to). L

0 AT

Please note that the above equation is exact for an infinitesimal
impulse loading.




Undamped SDOF S osclator
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For an infinitesimal impulse, the impulse-momentum is exactly
p(T) dT and the response is

p(T) dT

dx(t—1) = o
n

sinwp(t—1), t>T1,

and to evaluate the response at time t one has simply to sum all the
infinitesimal contributions for T < t,

Response to
infinitesimal
t impulse

x(t) = miu L p(t) sinw,(t—71)dt, t>0.

This relation is known as the Duhamel integral, and tacitly depends
on initial rest conditions for the system.

Jean-Marie Constant Duhamel (Saint-Malo, 5 February 1797 — Paris, 29 April 1872)

Damped SDOF Sosilator
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The derivation of the equation of motion for a generic load is
analogous to what we have seen for undamped SDOF, the
infinitesimal contribution to the response at time t of the load at
time T is

P(T) dtsinwp(t—1)exp(—Cwy(t—71)) t=71
mwp Response to

ARt
fphles

dx(t) =

and integrating all infinitesimal contributions one has

x(t) = mi)D JZ p(T) sinwp(t—1)exp(—Clwn(t—1))dt, t=0.

SDOF linear
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Using the trig identity
sin(wpt — wW,T) = sin Wyt cos W, T — €OS Wyt sin W, T
the Duhamel integral is rewritten as

fé p(T) sinw,TdT

t
Jop(t)coswytdT |
= sinwnt — cos Wyt

mwny mwn
= A(t)sin w,t — B(t) cos wnt

x(t)

Undamped
SDOF systems

where

Alt) = mzun fé p(T) cos w,T dT
B(t) = m%un fé p(T)sinw,TdT
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Usual numerical procedures can be applied to the evaluation of A
and B, e.g., using the trapezoidal rule, one can have, with

A, = A(nAT), vy, = p(nAt) cos(nAt) and z, = p(nAt)sin(nAt) we
can write

Any1=An+ 5 (Yn + Ynt1),
mwy,
AT
B =B,+——(z,+2z :
mt1 = Bnt o, (@t 2] Soismesd
Evaluation of Duhamel integral, damped S osdlator
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For a damped system, it can be shown that

x(t) = A(t)sinwpt — B(t)coswpt

with
1t exp (W, T
At) = [ p(T hcoswgrd’r,
mwp Jo exp (wnt
1 t exp (WwnT .
B(t) = p(T)————sinwpTdT.
mwp Jo exp Cwnt Damped SDOF
Numerical evaluation of Duhamel integral, damped e
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Numerically, using e.g. Simpson integration rule and
yn = p(nAT) cos wpT,

Anio = Apexp(—2Cwn,AT)+

[Vn exp(—2CwnAT) + 4ypi1 exp(—CWaAT) + Yool

3me
n=0,24 -

(You can write a similar relationship for B,12) Damped SDOF




Transfer Functions

The response of a linear SDOF system to arbitrary loading can be
evaluated by a convolution integral in the time domain,

x(t)

with the unit impulse response function

1

h(t) = exp(—Cwnt) sin(wpt), or through the frequency

mwp

domain using the Fourier integral
x(t) =

where H(w) is the complex frequency response function.

p(t) h(t — 1) dT,

H(w)P(w)exp(iwt) dw,

SDOF linear
oscillator
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Relationship
between time and
frequency domain

Transfer Functions

These response functions, or transfer functions, are connected by the
direct and inverse Fourier transforms:

H(w) :J

h(t)

h(t) exp(—iwt) dt,

H(w) exp(iwt) dw.

SDOF linear
oscillator
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Relationship
between time and
frequency domain

Relationship of transfer functions

We write the response and its Fourier transform:

x(t) = Jtp('t)h(t —T)dt = Jt p(t)h(t—1)dt

0

the lower limit of integration in the first equation was changed from
0 to —oo because p(t) =0 for T < 0, and since h(t — ) =0 for

T > t, the upper limit of the second integral in the second equation
can be changed from t to +oo,

X(w) = lim

S$—00

+00

Ut p(T)h(t — 1) dr} exp(—iwt) dt

—0oQ

p(T)h(t — 1) exp(—iwt) dt dt

SDOF linear
oscillator
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Relationship
between time and
frequency domain




Relationship of transfer functions

Introducing a new variable 8 = t — T we have

+s +s—T
X(w) = SILm J p(T) exp(—iwT) dTJ h(0) exp(—iw0) dO
with Ii_)m s — T = oo, we finally have
+o0 +oo
X(w) = J' p(T) exp(—iwT) dTJ h(0) exp(—iw0) dO
o0 oo —00
= P(w)J h(0) exp(—iw0) dO

where we have recognized that the first integral is the Fourier
transform of p(t).

SDOF linear
oscillator
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Relationship
between time and
frequency domain

Relationship of transfer functions

Our last relation was
X(w) = P(w)J h(0) exp(—iw0) dO

but X(w) = H(w)P(w), so that, noting that in the above equation
the last integral is just the Fourier transform of h(0), we may

conclude that, effectively, H(w) and h(t) form a Fourier transform
pair.

SDOF linear
oscillator
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Relationship
between time and
frequency domain




