PieceWise_Ixact_Integration

April 4, 2016

In [1]: Ymatplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from numpy import pi, cos, sin, sqrt, exp

1 Piecewise Exact Integration

1.1 The Dynamical System
We want to study a damped SDOF system, so characterized

In [2]: T=1.0 # Natural period of the oscillator
w=2%pi # circular frequency of the oscillator
m=1000.0 # oscillator’s mass, in kg
k=m*w*w # oscillator stifness, in N/m
z=0.05 # damping ratio over critical
C=2XZ*M*W # damping
wd=w*sqrt (1-z*z) # damped circular frequency
ratio=sqrt(l-z*z) # ratio damped/undamped frequencies

The excitation is given by a force such that the static displacement is 5 mm, modulated by a sine in
resonance with the dynamic sistem, i.e., w = wy,.

In [3]: D=0.005 # static displacement, 5mm
P=Dx*k # force amplitude

For such a system, we know exactly the response. The particular integral is

cos wt
) =—
£(t) = -5
and imposing rest initial conditions it is
x(t) = Bst ((# sinwpt 4 coswpt) exp(—(wt) — coswt) w=w
2< \/@ D D ) n-

In [4]: def exact(t):
return Dx((z*sin(wd*t)/ratio+cos(wd*t))*exp(-z*w*t)-cos(wkt))/(2*z)
t = np.linspace(0.0, 2.0, 1001)
plt.plot(t, exact(t));



0.020

0.015
0.010
0.005
0.000
—0.005
—0.010
—0.015

—0.020

—0.025 . . .
0.0 0.5 10 15 20

1.2 Numerical integration

Now we prepare for the numerical integration, first the constants that represent the homogeneous response
at end of step

In [5]: def initstep(h):
cdh=cos (wd*h) *exp (-z*w+*h)
sdh=sin (wd*h) *exp (-z*w+*h)
return cdh, sdh

then the actual step computations, where in terms of the initial state vector and the load variation the
final state is derived.

In [6]: def step(x0,v0,pO,pl,h,cdh,sdh):
dst=p0/k
ddst=(p1-p0) /k
B = x0 - dst + ((2*z)/w)*(ddst/h)
A = (vO + z*xwxB - ddst/h)/wd
x1 = A*sdh + B*cdh + dst + ddst - ddst/h * 2%z/w
vl = A*x(wd*cdh-z*w*sdh) - B*(z*w*cdh+wd*sdh) + ddst/h
return x1, vl

With those pieces in place, we can define a function that, for a given number of steps per period computes
the response on the interval 0 < ¢ < 2.0.

In [7]: def resp(nstep):
T = np.linspace(0.0, 2.0, 2*nstep + 1)

X = np.zeros(2*nstep + 1)

h=1./float(nstep)



cdh, sdh = initstep(h)
x1=0. ; v1=0. ; p1=0

for i, t in enumerate(T):
X[i] = x1
x0=x1 ; vO=vl ; pO=pl ; pl=P*sin(w*(t+h))
x1,vl=step(x0,v0,p0,pl,h, cdh, sdh)
return T, X

Let’s compute the responses for different numbers of steps, and store them away too. ..
In [8]: t_x = {n:resp(n) for n in (4, 8, 16)}
Eventually we can plot the numerical responses along with the exact response

In [9]: plt.plot(t, exact(t), label=’Exact’, 1lw=3)
plt.plot (xt_x[4], *t_x[8], *t_x[16])
plt.grid()
plt.legend(loc=3)
plt.xlabel(’Time t/s’)
plt.ylabel(’Displacement x/m’);

0.020

0.015

0010

0.005

0.000

—0.005

—0.010

Displacement x/m

—0.015

—0.020

—0.025 . .
0.0 0.5 10 15 20

Time t's

But... there are only two numerical curves and I’ve plotted three of them.
Let’s plot the difference between the exact response and the response computed at 16 samples per
period. . .

In [10]: t16, x16 = t_x[16]
plt.plot(t16, exact(t16)-x16)

Out[10]: [<matplotlib.lines.Line2D at 0x7£f18b89c6208>]



0.0003 - ; T

0.0002

0.0001

0.0000 1

—0.0001

—0.0002

—0.0003 L L L
0.0 0.5 10 15 20

As you can see, the max difference is about 0.3 mm, to be compared with a max response of almost 25
mm, hence an error in the order of 1.2% that in the previous plot led to the apparent disappearance of the
NSTEP=16 curve.



	Piecewise Exact Integration
	The Dynamical System
	Numerical integration


