PieceWise_Ixact_Integration

April 4, 2016

In [1]: Ymatplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from numpy import pi, cos, sin, sqrt, exp

1 Piecewise Exact Integration

1.1 The Dynamical System
We want to study a damped SDOF system, so characterized

In [2]: T=1.0 # Natural period of the oscillator
w=2%pi # circular frequency of the oscillator
m=1000.0 # oscillator’s mass, in kg
k=m*w*w # oscillator stifness, in N/m
z=0.05 # damping ratio over critical
C=2XZ*M*W # damping
wd=w*sqrt (1-z*z) # damped circular frequency
ratio=sqrt(l-z*z) # ratio damped/undamped frequencies

The excitation is given by a force such that the static displacement is 5 mm, modulated by a sine in
resonance with the dynamic sistem, i.e., w = wy,.

In [3]: D=0.005 # static displacement, 5mm
P=Dx*k # force amplitude

For such a system, we know exactly the response. The particular integral is

cos wt
) =—
£(t) = -5
and imposing rest initial conditions it is
x(t) = Bst ((# sinwpt 4 coswpt) exp(—(wt) — coswt) w=w
2< \/@ D D ) n-

In [4]: def exact(t):
return Dx((z*sin(wd*t)/ratio+cos(wd*t))*exp(-z*w*t)-cos(wkt))/(2*z)
t = np.linspace(0.0, 2.0, 1001)
plt.plot(t, exact(t));
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1.2 Numerical integration

Now we prepare for the numerical integration, first the constants that represent the homogeneous response
at end of step

In [5]: def initstep(h):
cdh=cos (wd*h) *exp (-z*w+*h)
sdh=sin (wd*h) *exp (-z*w+*h)
return cdh, sdh

then the actual step computations, where in terms of the initial state vector and the load variation the
final state is derived.

In [6]: def step(x0,v0,pO,pl,h,cdh,sdh):
dst=p0/k
ddst=(p1-p0) /k
B = x0 - dst + ((2*z)/w)*(ddst/h)
A = (vO + z*xwxB - ddst/h)/wd
x1 = A*sdh + B*cdh + dst + ddst - ddst/h * 2%z/w
vl = A*x(wd*cdh-z*w*sdh) - B*(z*w*cdh+wd*sdh) + ddst/h
return x1, vl

With those pieces in place, we can define a function that, for a given number of steps per period computes
the response on the interval 0 < ¢ < 2.0.

In [7]: def resp(nstep):
T = np.linspace(0.0, 2.0, 2*nstep + 1)

X = np.zeros(2*nstep + 1)

h=1./float(nstep)



cdh, sdh = initstep(h)
x1=0. ; v1=0. ; p1=0

for i, t in enumerate(T):
X[i] = x1
x0=x1 ; vO=vl ; pO=pl ; pl=P*sin(w*(t+h))
x1,vl=step(x0,v0,p0,pl,h, cdh, sdh)
return T, X

Let’s compute the responses for different numbers of steps, and store them away too. ..
In [8]: t_x = {n:resp(n) for n in (4, 8, 16)}
Eventually we can plot the numerical responses along with the exact response

In [9]: plt.plot(t, exact(t), label=’Exact’, 1lw=3)
plt.plot (xt_x[4], *t_x[8], *t_x[16])
plt.grid()
plt.legend(loc=3)
plt.xlabel(’Time t/s’)
plt.ylabel(’Displacement x/m’);
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But... there are only two numerical curves and I’ve plotted three of them.
Let’s plot the difference between the exact response and the response computed at 16 samples per
period. . .

In [10]: t16, x16 = t_x[16]
plt.plot(t16, exact(t16)-x16)

Out[10]: [<matplotlib.lines.Line2D at 0x7£f18b89c6208>]
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As you can see, the max difference is about 0.3 mm, to be compared with a max response of almost 25
mm, hence an error in the order of 1.2% that in the previous plot led to the apparent disappearance of the
NSTEP=16 curve.
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