
PieceWise Exact Integration

April 4, 2016

In [1]: %matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

from numpy import pi, cos, sin, sqrt, exp

1 Piecewise Exact Integration

1.1 The Dynamical System

We want to study a damped SDOF system, so characterized

In [2]: T=1.0 # Natural period of the oscillator

w=2*pi # circular frequency of the oscillator

m=1000.0 # oscillator’s mass, in kg

k=m*w*w # oscillator stifness, in N/m

z=0.05 # damping ratio over critical

c=2*z*m*w # damping

wd=w*sqrt(1-z*z) # damped circular frequency

ratio=sqrt(1-z*z) # ratio damped/undamped frequencies

The excitation is given by a force such that the static displacement is 5 mm, modulated by a sine in
resonance with the dynamic sistem, i.e., ω = ωn.

In [3]: D=0.005 # static displacement, 5mm

P=D*k # force amplitude

For such a system, we know exactly the response. The particular integral is

ξ(t) = −cosωt

2ζ

and imposing rest initial conditions it is

x(t) =
∆st

2ζ
((

ζ√
1 = ζ2

sinωDt+ cosωDt) exp(−ζωt) − cosωt), ω = ωn.

In [4]: def exact(t):

return D*((z*sin(wd*t)/ratio+cos(wd*t))*exp(-z*w*t)-cos(w*t))/(2*z)

t = np.linspace(0.0, 2.0, 1001)

plt.plot(t, exact(t));

1



1.2 Numerical integration

Now we prepare for the numerical integration, first the constants that represent the homogeneous response
at end of step

In [5]: def initstep(h):

cdh=cos(wd*h)*exp(-z*w*h)

sdh=sin(wd*h)*exp(-z*w*h)

return cdh, sdh

then the actual step computations, where in terms of the initial state vector and the load variation the
final state is derived.

In [6]: def step(x0,v0,p0,p1,h,cdh,sdh):

dst=p0/k

ddst=(p1-p0)/k

B = x0 - dst + ((2*z)/w)*(ddst/h)

A = (v0 + z*w*B - ddst/h)/wd

x1 = A*sdh + B*cdh + dst + ddst - ddst/h * 2*z/w

v1 = A*(wd*cdh-z*w*sdh) - B*(z*w*cdh+wd*sdh) + ddst/h

return x1, v1

With those pieces in place, we can define a function that, for a given number of steps per period computes
the response on the interval 0 ≤ t ≤ 2.0.

In [7]: def resp(nstep):

T = np.linspace(0.0, 2.0, 2*nstep + 1)

X = np.zeros(2*nstep + 1)

h=1./float(nstep)

2



cdh, sdh = initstep(h)

x1=0. ; v1=0. ; p1=0

for i, t in enumerate(T):

X[i] = x1

x0=x1 ; v0=v1 ; p0=p1 ; p1=P*sin(w*(t+h))

x1,v1=step(x0,v0,p0,p1,h, cdh, sdh)

return T, X

Let’s compute the responses for different numbers of steps, and store them away too. . .

In [8]: t_x = {n:resp(n) for n in (4, 8, 16)}

Eventually we can plot the numerical responses along with the exact response

In [9]: plt.plot(t, exact(t), label=’Exact’, lw=3)

plt.plot(*t_x[4], *t_x[8], *t_x[16])

plt.grid()

plt.legend(loc=3)

plt.xlabel(’Time t/s’)

plt.ylabel(’Displacement x/m’);

But. . . there are only two numerical curves and I’ve plotted three of them.
Let’s plot the difference between the exact response and the response computed at 16 samples per

period. . .

In [10]: t16, x16 = t_x[16]

plt.plot(t16, exact(t16)-x16)

Out[10]: [<matplotlib.lines.Line2D at 0x7f18b89c6208>]

3



As you can see, the max difference is about 0.3 mm, to be compared with a max response of almost 25
mm, hence an error in the order of 1.2% that in the previous plot led to the apparent disappearance of the
NSTEP=16 curve.

4


	Piecewise Exact Integration
	The Dynamical System
	Numerical integration


