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Piecewise exact method

I We use the exact solution of the equation of motion for a
system excited by a linearly varying force, so the source of all
errors lies in the piecewise linearisation of the force function and
in the approximation due to a local linear model.

I We will see that an appropriate time step can be decided in
terms of the number of points required to accurately describe
either the force or the response function.
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Piecewise exact method

For a generic time step of duration h, consider
I {x0, ẋ0} the initial state vector,
I p0 and p1, the values of p(t) at the start and the end of the

integration step,
I the linearised force

p(τ) = p0 + ατ, 0 6 τ 6 h, α = (p(h) − p(0))/h,

I the forced response

x = e−ζωτ(A cos(ωDτ) + B sin(ωDτ)) + (αkτ+ kp0 − αc)/k
2,

where k and c are the stiffness and damping of the SDOF
system.
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Piecewise exact method

Evaluating the response x and the velocity ẋ for τ = 0 and equating
to {x0, ẋ0}, writing ∆st = p(0)/k and δ(∆st) = (p(h) − p(0))/k, one
can find A and B

A =

(
ẋ0 + ζωB−

δ(∆st)

h

)
1

ωD

B = x0 +
2ζ

ω

δ(∆st)

h
− ∆st

substituting and evaluating for τ = h one finds the state vector at
the end of the step.
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Piecewise exact method

With

Sζ,h = sin(ωDh) exp(−ζωh) and Cζ,h = cos(ωDh) exp(−ζωh)

and the previous definitions of ∆st and δ(∆st), finally we can write

x(h) = A Sζ,h + BCζ,h + (∆st + δ(∆st)) −
2ζ

ω

δ(∆st)

h

ẋ(h) = A(ωDCζ,h − ζωSζ,h) − B(ζωCζ,h +ωDSζ,h) +
δ(∆st)

h

where

B = x0 +
2ζ

ω

δ(∆st)

h
− ∆st, A =

(
ẋ0 + ζωB−

δ(∆st)

h

)
1

ωD
.
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Example

We have a damped system that is excited by a load in resonance
with the system, we know the exact response and we want to
compute a step-by-step approximation using different step lengths.

m=1000kg,

k=4π2 1000N/m,

ω=2π,

ζ=0.05,

p(t) =
4π25N sin(2π t)
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Exact
h=T/4
h=T/8

h=T/16

It is apparent that you have a very good approximation when the
linearised loading is a very good approximation of the input function,
let’s say h 6 T/10.
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Central differences

To derive the Central Differences Method, we write the eq. of
motion at time τ = 0 and find the initial acceleration,

mẍ0 + cẋ0 + kx0 = p0 ⇒ ẍ0 =
1

m
(p0 − cẋ0 − kx0)

On the other hand, the initial acceleration can be expressed in terms
of finite differences,

ẍ0 =
x1 − 2x0 + x−1

h2
=

1

m
(p0 − cẋ0 − kx0)

solving for x1

x1 = 2x0 − x−1 +
h2

m
(p0 − cẋ0 − kx0)
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Central differences
We have an expression for x1, the displacement at the end of the step,

x1 = 2x0 − x−1 +
h2

m
(p0 − cẋ0 − kx0),

but we have an additional unknown, x−1... if we write the finite differences
approximation to ẋ0 we can find an approximation to x−1 in terms of the
initial velocity ẋ0 and the unknown x1

ẋ0 =
x1 − x−1

2h
⇒ x−1 = x1 − 2hẋ0

Substituting in the previous equation

x1 = 2x0 − x1 + 2hẋ0 +
h2

m
(p0 − cẋ0 − kx0),

and solving for x1

x1 = x0 + hẋ0 +
h2

2m
(p0 − cẋ0 − kx0)
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Central differences

x1 = x0 + hẋ0 +
h2

2m
(p0 − cẋ0 − kx0)

To start a new step, we need the value of ẋ1, but we may
approximate the mean velocity, again, by finite differences

ẋ0 + ẋ1
2

=
x1 − x0
h

⇒ ẋ1 =
2(x1 − x0)

h
− ẋ0

The method is very simple, but it is conditionally stable. The
stability condition is defined with respect to the natural frequency, or
the natural period, of the SDOF oscillator,

ωnh 6 2⇒ h 6 Tn

π
≈ 0.32Tn

For a SDOF this is not relevant because, as we have seen in our
previous example, we need more points for response cycle to
correctly represent the response.
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Methods based on Integration

We will make use of an hypothesis on the variation of the
acceleration during the time step and of analytical integration of
acceleration and velocity to step forward from the initial to the final
condition for each time step.
In general, these methods are based on the two equations

ẋ1 = ẋ0 +

∫h

0
ẍ(τ)dτ,

x1 = x0 +

∫h

0
ẋ(τ)dτ,

which express the final velocity and the final displacement in terms of
the initial values x0 and ẋ0 and some definite integrals that depend
on the assumed variation of the acceleration during the time step.
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Integration Methods

Depending on the different assumption we can make on the variation
of velocity, different integration methods can be derived.
We will see

I the constant acceleration method,
I the linear acceleration method,
I the family of methods known as Newmark Beta Methods, that

comprises the previous methods as particular cases.
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Constant Acceleration

Here we assume that the acceleration is constant during each time
step, equal to the mean value of the initial and final values:

ẍ(τ) = ẍ0 + ∆ẍ/2,

where ∆ẍ = ẍ1 − ẍ0, hence

ẋ1 = ẋ0 +

∫h

0
(ẍ0 + ∆ẍ/2)dτ

⇒ ∆ẋ = ẍ0h+ ∆ẍh/2

x1 = x0 +

∫h

0
(ẋ0 + (ẍ0 + ∆ẍ/2)τ)dτ

⇒ ∆x = ẋ0h+ (ẍ0)h
2/2+ ∆ẍh2/4

SbS Methods,
Rigid Bodies

Giacomo Boffi

Examples of SbS
Methods
Piecewise Exact
Central
Differences
Integration
Constant
Acceleration
Linear
Acceleration
Newmark Beta

Constant acceleration

Taking into account the two equations on the right of the previous
slide, and solving for ∆ẋ and ∆ẍ in terms of ∆x, we have

∆ẋ =
2∆x− 2hẋ0

h
, ∆ẍ =

4∆x− 4hẋ0 − 2ẍ0h
2

h2
.

We have two equations and three unknowns... Assuming that the
system characteristics are constant during a single step, we can write
the equation of motion at times τ = h and τ = 0, subtract member
by member and write the incremental equation of motion

m∆ẍ+ c∆ẋ+ k∆x = ∆p,

that is a third equation that relates our unknowns.
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Constant acceleration

Substituting the above expressions for ∆ẋ and ∆ẍ in the incremental
eq. of motion and solving for ∆x gives, finally,

∆x =
p̃

k̃
, ∆ẋ =

2∆x− 2hẋ0
h

where

k̃ = k+
2c

h
+

4m

h2

p̃ = ∆p+ 2cẋ0 +m(2ẍ0 +
4

h
ẋ0)

While it is possible to compute the final acceleration in terms of ∆x,
to achieve a better accuracy it is usually computed solving the
equation of equilibrium written at the end of the time step.
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Constant Acceleration

Two further remarks

1. The method is unconditionally stable
2. The effective stiffness, disregarding damping, is k̃ ≈ k+ 4m/h2.

Dividing both members of the above equation by k it is

k̃

k
= 1+

4

ω2
n h

2
= 1+

4

(2π/Tn)2 h2
=

T 2n
π2h2

,

The number nT of time steps in a period Tn is related to the time step duration,
nT = Tn/h, solving for h and substituting in our last equation, we have

k̃

k
≈ 1+

n2
T

π2

For, e.g., nT = 2π it is k̃/k ≈ 1+ 4, the mass contribution to the effective
stiffness is four times the elastic stiffness and the 80% of the total.
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Linear Acceleration

We assume that the acceleration is linear, i.e.

ẍ(t) = ẍ0 + ∆ẍ
τ

h

hence

∆ẋ = ẍ0h+ ∆ẍh/2, ∆x = ẋ0h+ ẍ0h
2/2+ ∆ẍh2/6

Following a derivation similar to what we have seen in the case of
constant acceleration, we can write, again,

∆x =
(
k+ 3

c

h
+ 6

m

h2

)−1
[
∆p+ c(ẍ0

h

2
+ 3ẋ0) +m(3ẍ0 + 6

ẋ0

h
)

]

∆ẋ = ∆x
3

h
− 3ẋ0 − ẍ0

h

2
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Linear Acceleration

The linear acceleration method is conditionally stable, the stability
condition being

h

T
6
√
3

π
≈ 0.55

When dealing with SDOF systems, this condition is never of concern,
as we need a shorter step to accurately describe the response of the
oscillator, let’s say h 6 0.12T ...
When stability is not a concern, the accuracy of the linear
acceleration method is far superior to the accuracy of the constant
acceleration method, so that this is the method of choice for the
analysis of SDOF systems.
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Newmark Beta Methods

The constant and linear acceleration methods are just two members
of the family of Newmark Beta methods, where we write

∆ẋ = (1− γ)hẍ0 + γhẍ1

∆x = hẋ0 + (
1

2
− β)h2ẍ0 + βh

2ẍ1

The factor γ weights the influence of the initial and final
accelerations on the velocity increment, while β has a similar role
with respect to the displacement increment.
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Newmark Beta Methods

Using γ 6= 1/2 leads to numerical damping, so when analysing SDOF
systems, one uses γ = 1/2 (numerical damping may be desirable
when dealing with MDOF systems).
Using β = 1

4 leads to the constant acceleration method, while β = 1
6

leads to the linear acceleration method. In the context of MDOF
analysis, it’s worth knowing what is the minimum β that leads to an
unconditionally stable behaviour.
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Newmark Beta Methods

The general format for the solution of the incremental equation of
motion using the Newmark Beta Method can be written as follows:

∆x =
∆p̃

k̃

∆v =
γ

β

∆x

h
−
γ

β
v0 + h

(
1−

γ

2β

)
a0

with

k̃ = k+
γ

β

c

h
+

1

β

m

h2

∆p̃ = ∆p+

(
h

(
γ

2β
− 1

)
c+

1

2β
m

)
a0 +

(
γ

β
c+

1

β

m

h

)
v0


