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Vibration Analysis

I The process of estimating the vibration characteristics of a
complex system is known as vibration analysis.

I We can use our previous results for flexible systems, based on
the SDOF model, to give an estimate of the natural frequency
ω2 = k?/m?

I A different approach, proposed by Lord Rayleigh, starts from
different premises to give the same results but the Rayleigh’s
Quotient method is important because it offers a better
understanding of the vibrational behaviour, eventually leading to
successive refinements of the first estimate of ω2.
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Rayleigh’s Quotient Method

Our focus will be on the free vibration of a flexible, undamped
system.

I inspired by the free vibrations of a proper SDOF we write

Z(t) = Z0 sinωt and v(x, t) = Z0Ψ(x) sinωt,

I the displacement and the velocity are in quadrature: when v is
at its maximum v̇ = 0 (hence V = Vmax, T = 0) and when
v = 0 v̇ is at its maximum (hence V = 0, T = Tmax,

I disregarding damping, the energy of the system is constant
during free vibrations,

Vmax + 0 = 0 + Tmax
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Rayleigh’ s Quotient Method

Now we write the expressions for Vmax and Tmax,

Vmax =
1

2
Z2

0

∫
S

EJ(x)Ψ′′2(x) dx,

Tmax =
1

2
ω2Z2

0

∫
S

m̄(x)Ψ2(x) dx,

equating the two expressions and solving for ω2 we have

ω2 =

∫
S EJ(x)Ψ

′′2(x) dx∫
S m̄(x)Ψ2(x) dx

.

Recognizing the expressions we found for k? and m? we could
question the utility of Rayleigh’s Quotient...
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Rayleigh’s Quotient Method

I in Rayleigh’s method we know the specific time dependency of
the inertial forces

fI = −m̄(x)v̈ = m̄(x)ω2Z0Ψ(x) sinωt

fI has the same shape we use for displacements.
I if Ψ were the real shape assumed by the structure in free

vibrations, the displacements v due to a loading
fI = ω

2m̄(x)Ψ(x)Z0 should be proportional to Ψ(x) through a
constant factor, with equilibrium respected in every point of the
structure during free vibrations.

I starting from a shape function Ψ0(x), a new shape function Ψ1

can be determined normalizing the displacements due to the
inertial forces associated with Ψ0(x), fI = m̄(x)Ψ0(x),

I we are going to demonstrate that the new shape function is a
better approximation of the true mode shape
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Selection of mode shapes

Given different shape functions Ψi and considering the true shape of
free vibration Ψ, in the former cases equilibrium is not respected by
the structure itself.

To keep inertia induced deformation proportional to Ψi we must
consider the presence of additional elastic constraints. This leads to
the following considerations

I the frequency of vibration of a structure with additional
constraints is higher than the true natural frequency,

I the criterium to discriminate between different shape functions
is: better shape functions give lower estimates of the natural
frequency, the true natural frequency being a lower bound of all
estimates.
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Selection of mode shapes 2

In general the selection of trial shapes goes through two steps,
1. the analyst considers the flexibilities of different parts of the

structure and the presence of symmetries to devise an
approximate shape,

2. the structure is loaded with constant loads directed as the
assumed displacements, the displacements are computed and
used as the shape function,

of course a little practice helps a lot in the the choice of a proper
pattern of loading...
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Selection of mode shapes 3

p = m(x)

P =M

p = m(x)

p
=
m
(x
)

p = m(x)
(a)

(b) (c)

(d)
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Refinement R00

Choose a trial function Ψ(0)(x) and write

v(0) = Ψ(0)(x)Z(0) sinωt

Vmax =
1

2
Z(0)2

∫
EJΨ(0)′′2 dx

Tmax =
1

2
ω2Z(0)2

∫
m̄Ψ(0)2 dx

our first estimate R00 of ω2 is

ω2 =

∫
EJΨ(0)′′2 dx∫
m̄Ψ(0)2 dx

.
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Refinement R01

We try to give a better estimate of Vmax computing the external
work done by the inertial forces,

p(0) = ω2m̄(x)v(0) = Z(0)ω2Ψ(0)(x)

the deflections due to p(0) are

v(1) = ω2 v
(1)

ω2
= ω2Ψ(1)Z

(1)

ω2
= ω2Ψ(1)Z̄(1),

where we write Z̄(1) because we need to keep the unknown ω2 in
evidence. The maximum strain energy is

Vmax =
1

2

∫
p(0)v(1) dx =

1

2
ω4Z(0)Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx

Equating to our previus estimate of Tmax we find the R01 estimate

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(0) dx∫
m̄(x)Ψ(0)Ψ(1) dx
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Refinement R11

With little additional effort it is possible to compute Tmax from v(1):

Tmax =
1

2
ω2

∫
m̄(x)v(1)2 dx =

1

2
ω6Z̄(1)2

∫
m̄(x)Ψ(1)2 dx

equating to our last approximation for Vmax we have the R11

approximation to the frequency of vibration,

ω2 =
Z(0)

Z̄(1)

∫
m̄(x)Ψ(0)Ψ(1) dx∫
m̄(x)Ψ(1)Ψ(1) dx

.

Of course the procedure can be extended to compute better and
better estimates of ω2 but usually the refinements are not extended
beyond R11, because it would be contradictory with the quick
estimate nature of the Rayleigh’s Quotient method and also because
R11 estimates are usually very good ones.
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