Rayleigh's Quotient

Giacomo Boffi

http://intranet.dica.polimi.it/people/boffi-giacomo

Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano

April 7, 2016

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Refinement of Rayleigh's Estimates

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

The process of estimating the vibration characteristics of a complex system is known as *vibration analysis*.

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Vibration Analysis

- The process of estimating the vibration characteristics of a complex system is known as vibration analysis.
- \blacktriangleright We can use our previous results for flexible systems, based on the SDOF model, to give an estimate of the natural frequency $\omega^2=k^{\star}/m^{\star}$

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Vibration Analysis

- The process of estimating the vibration characteristics of a complex system is known as vibration analysis.
- \blacktriangleright We can use our previous results for flexible systems, based on the SDOF model, to give an estimate of the natural frequency $\omega^2=k^{\star}/m^{\star}$
- A different approach, proposed by Lord Rayleigh, starts from different premises to give the same results but the *Rayleigh's Quotient* method is important because it offers a better understanding of the vibrational behaviour, eventually leading to successive refinements of the first estimate of ω².

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Our focus will be on the *free vibration* of a flexible, undamped system.

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Our focus will be on the *free vibration* of a flexible, undamped system.

▶ inspired by the free vibrations of a proper *SDOF* we write

 $Z(t)=Z_0\sin\,\omega t \text{ and }\nu(x,t)=Z_0\Psi(x)\sin\,\omega t,$

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Our focus will be on the *free vibration* of a flexible, undamped system.

▶ inspired by the free vibrations of a proper *SDOF* we write

 $Z(t) = Z_0 \sin \omega t$ and $v(x, t) = Z_0 \Psi(x) \sin \omega t$,

► the displacement and the velocity are in quadrature: when v is at its maximum v = 0 (hence V = V_{max}, T = 0) and when v = 0 v is at its maximum (hence V = 0, T = T_{max},

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Our focus will be on the *free vibration* of a flexible, undamped system.

▶ inspired by the free vibrations of a proper *SDOF* we write

 $Z(t) = Z_0 \sin \omega t$ and $v(x, t) = Z_0 \Psi(x) \sin \omega t$,

- ► the displacement and the velocity are in quadrature: when v is at its maximum v = 0 (hence V = V_{max}, T = 0) and when v = 0 v is at its maximum (hence V = 0, T = T_{max},
- disregarding damping, the energy of the system is constant during free vibrations,

$$V_{\max} + 0 = 0 + T_{\max}$$

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Now we write the expressions for V_{max} and $T_{\text{max}},$

$$\begin{split} V_{\text{max}} &= \frac{1}{2} Z_0^2 \int_S E J(x) \Psi''^2(x) \, \text{d}x, \\ T_{\text{max}} &= \frac{1}{2} \omega^2 Z_0^2 \int_S \bar{m}(x) \Psi^2(x) \, \text{d}x, \end{split}$$

equating the two expressions and solving for ω^2 we have

$$\omega^2 = \frac{\int_S EJ(x)\Psi''^2(x)\,dx}{\int_S \bar{\mathfrak{m}}(x)\Psi^2(x)\,dx}.$$

Recognizing the expressions we found for k^\star and m^\star we could question the utility of Rayleigh's Quotient...

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

 in Rayleigh's method we know the specific time dependency of the inertial forces

 $f_I = -\bar{m}(x) \ddot{\nu} = \bar{m}(x) \omega^2 Z_0 \Psi(x) \sin \omega t$

 f_1 has the same *shape* we use for displacements.

if Ψ were the real shape assumed by the structure in free vibrations, the displacements ν due to a loading
 f_I = ω²m̄(x)Ψ(x)Z₀ should be proportional to Ψ(x) through a constant factor, with equilibrium respected in every point of the structure during free vibrations.

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

 in Rayleigh's method we know the specific time dependency of the inertial forces

 $f_I = -\bar{\mathfrak{m}}(x) \ddot{\nu} = \bar{\mathfrak{m}}(x) \omega^2 Z_0 \Psi(x) \sin \omega t$

 f_1 has the same *shape* we use for displacements.

- if Ψ were the real shape assumed by the structure in free vibrations, the displacements ν due to a loading
 f_I = ω²m̄(x)Ψ(x)Z₀ should be proportional to Ψ(x) through a constant factor, with equilibrium respected in every point of the structure during free vibrations.
- starting from a shape function Ψ₀(x), a new shape function Ψ₁ can be determined normalizing the displacements due to the inertial forces associated with Ψ₀(x), f₁ = m̄(x)Ψ₀(x),

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

 in Rayleigh's method we know the specific time dependency of the inertial forces

 $f_I = -\bar{\mathfrak{m}}(x) \ddot{\nu} = \bar{\mathfrak{m}}(x) \omega^2 Z_0 \Psi(x) \sin \omega t$

 f_I has the same *shape* we use for displacements.

- if Ψ were the real shape assumed by the structure in free vibrations, the displacements ν due to a loading
 f_I = ω²m̄(x)Ψ(x)Z₀ should be proportional to Ψ(x) through a constant factor, with equilibrium respected in every point of the structure during free vibrations.
- starting from a shape function Ψ₀(x), a new shape function Ψ₁ can be determined normalizing the displacements due to the inertial forces associated with Ψ₀(x), f₁ = m̄(x)Ψ₀(x),
- we are going to demonstrate that the new shape function is a better approximation of the true mode shape

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Given different shape functions Ψ_i and considering the true shape of free vibration Ψ , in the former cases equilibrium is not respected by the structure itself.

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Given different shape functions Ψ_i and considering the true shape of free vibration Ψ , in the former cases equilibrium is not respected by the structure itself.

To keep inertia induced deformation proportional to Ψ_i we must consider the presence of additional elastic constraints. This leads to the following considerations

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Given different shape functions Ψ_i and considering the true shape of free vibration Ψ , in the former cases equilibrium is not respected by the structure itself.

To keep inertia induced deformation proportional to Ψ_i we must consider the presence of additional elastic constraints. This leads to the following considerations

the frequency of vibration of a structure with additional constraints is higher than the true natural frequency,

Rayleigh's Quotient

Giacomo Boffi

/ibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Given different shape functions Ψ_i and considering the true shape of free vibration Ψ , in the former cases equilibrium is not respected by the structure itself.

To keep inertia induced deformation proportional to Ψ_i we must consider the presence of additional elastic constraints. This leads to the following considerations

- the frequency of vibration of a structure with additional constraints is higher than the true natural frequency,
- the criterium to discriminate between different shape functions is: better shape functions give lower estimates of the natural frequency, the true natural frequency being a lower bound of all estimates.

Rayleigh's Quotient

Giacomo Boffi

/ibration Analysis by Rayleigh's Method

Selection of Mode Shapes

In general the selection of trial shapes goes through two steps,

- 1. the analyst considers the flexibilities of different parts of the structure and the presence of symmetries to devise an approximate shape,
- 2. the structure is loaded with constant loads directed as the assumed displacements, the displacements are computed and used as the shape function,

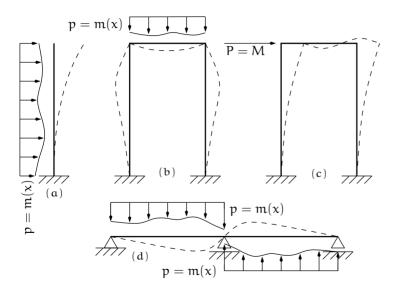
of course a little practice helps a lot in the the choice of a proper pattern of loading...

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes



Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Refinement R₀₀

Choose a trial function $\Psi^{(0)}(\boldsymbol{x})$ and write

$$\begin{split} \nu^{(0)} &= \Psi^{(0)}(x) Z^{(0)} \sin \omega t \\ V_{max} &= \frac{1}{2} Z^{(0)2} \int E J \Psi^{(0)\prime\prime 2} \, dx \\ T_{max} &= \frac{1}{2} \omega^2 Z^{(0)2} \int \bar{m} \Psi^{(0)2} \, dx \end{split}$$

our first estimate R_{00} of ω^2 is

$$\omega^2 = \frac{\int E J \Psi^{(0) \, \prime \prime 2} \, \mathrm{d}x}{\int \bar{m} \Psi^{(0) \, 2} \, \mathrm{d}x}.$$

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Refinement R₀₁

We try to give a better estimate of V_{max} computing the external work done by the inertial forces,

$$p^{(0)} = \omega^2 \bar{m}(x) \nu^{(0)} = Z^{(0)} \omega^2 \Psi^{(0)}(x)$$

the deflections due to $p^{\left(0\right)}$ are

$$v^{(1)} = \omega^2 \frac{v^{(1)}}{\omega^2} = \omega^2 \Psi^{(1)} \frac{Z^{(1)}}{\omega^2} = \omega^2 \Psi^{(1)} \bar{Z}^{(1)},$$

where we write $\bar{Z}^{(1)}$ because we need to keep the unknown ω^2 in evidence. The maximum strain energy is

$$V_{\text{max}} = \frac{1}{2} \int p^{(0)} \nu^{(1)} \, \text{d}x = \frac{1}{2} \omega^4 Z^{(0)} \bar{Z}^{(1)} \int \bar{\mathfrak{m}}(x) \Psi^{(0)} \Psi^{(1)} \, \text{d}x$$

Equating to our previus estimate of T_{max} we find the R_{01} estimate

$$\omega^{2} = \frac{Z^{(0)}}{\bar{Z}^{(1)}} \frac{\int \bar{m}(x) \Psi^{(0)} \Psi^{(0)} dx}{\int \bar{m}(x) \Psi^{(0)} \Psi^{(1)} dx}$$

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Refinement R_{11}

With little additional effort it is possible to compute T_{max} from $\nu^{(1)}$:

$$T_{\text{max}} = \frac{1}{2}\omega^2 \int \bar{\mathfrak{m}}(x) \nu^{(1)2} \, dx = \frac{1}{2}\omega^6 \bar{Z}^{(1)2} \int \bar{\mathfrak{m}}(x) \Psi^{(1)2} \, dx$$

equating to our last approximation for V_{max} we have the R_{11} approximation to the frequency of vibration,

$$\omega^{2} = \frac{Z^{(0)}}{\bar{Z}^{(1)}} \frac{\int \bar{\mathfrak{m}}(x) \Psi^{(0)} \Psi^{(1)} \, dx}{\int \bar{\mathfrak{m}}(x) \Psi^{(1)} \Psi^{(1)} \, dx}$$

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Refinement R₁₁

With little additional effort it is possible to compute T_{max} from $\nu^{(1)}$:

$$T_{\text{max}} = \frac{1}{2}\omega^2 \int \bar{\mathfrak{m}}(x) \nu^{(1)2} \, \text{d}x = \frac{1}{2}\omega^6 \bar{Z}^{(1)2} \int \bar{\mathfrak{m}}(x) \Psi^{(1)2} \, \text{d}x$$

equating to our last approximation for V_{max} we have the R_{11} approximation to the frequency of vibration,

$$\omega^{2} = \frac{Z^{(0)}}{\bar{Z}^{(1)}} \frac{\int \bar{\mathfrak{m}}(x) \Psi^{(0)} \Psi^{(1)} \, dx}{\int \bar{\mathfrak{m}}(x) \Psi^{(1)} \Psi^{(1)} \, dx}.$$

Of course the procedure can be extended to compute better and better estimates of ω^2 but usually the refinements are not extended beyond R₁₁, because it would be contradictory with the quick estimate nature of the Rayleigh's Quotient method

Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Refinement R₁₁

With little additional effort it is possible to compute T_{max} from $\nu^{(1)}$:

$$T_{\text{max}} = \frac{1}{2}\omega^2 \int \bar{\mathfrak{m}}(x) \nu^{(1)2} \, \text{d}x = \frac{1}{2}\omega^6 \bar{Z}^{(1)2} \int \bar{\mathfrak{m}}(x) \Psi^{(1)2} \, \text{d}x$$

equating to our last approximation for V_{max} we have the R_{11} approximation to the frequency of vibration,

$$\omega^{2} = \frac{Z^{(0)}}{\bar{Z}^{(1)}} \frac{\int \bar{\mathfrak{m}}(x) \Psi^{(0)} \Psi^{(1)} \, dx}{\int \bar{\mathfrak{m}}(x) \Psi^{(1)} \Psi^{(1)} \, dx}.$$

Of course the procedure can be extended to compute better and better estimates of ω^2 but usually the refinements are not extended beyond R₁₁, because it would be contradictory with the quick estimate nature of the Rayleigh's Quotient method and also because R₁₁ estimates are usually very good ones.

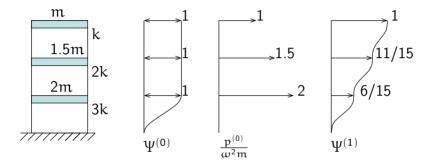
Rayleigh's Quotient

Giacomo Boffi

Vibration Analysis by Rayleigh's Method

Selection of Mode Shapes

Refinement Example



$$T = \frac{1}{2}\omega^{2} \times 4.5 \times m Z_{0}$$

$$V = \frac{1}{2} \times 1 \times 3k Z_{0}$$

$$\omega^{2} = \frac{3}{9/2}\frac{k}{m} = \frac{2}{3}\frac{k}{m}$$

$$V^{(1)} = \frac{15}{4}\frac{m}{k}\omega^{2}\Psi^{(1)}$$

$$V^{(1)} = \frac{1}{2}m\frac{15}{4}\frac{m}{k}\omega^{4}(1+33/30+4/5)$$

$$= \frac{1}{2}m\frac{15}{4}\frac{m}{k}\omega^{4}\frac{87}{30}$$

$$\omega^{2} = \frac{\frac{9}{2}m}{m\frac{87}{8}\frac{m}{k}} = \frac{12}{29}\frac{k}{m} = 0.4138\frac{k}{m}$$